Cordycepin (3'-deoxyadenosine) has been shown to exhibit many pharmacological activities, including anti-cancer, anti-inflammatory, and anti-infection activities. However, the anti-skin photoaging effects of cordycepin have not yet been reported. In the present study, we investigated the inhibitory effects of cordycepin on matrix metalloproteinase-1 (MMP-1) and -3 expressions of the human dermal fibroblast cells. Western blot analysis and real-time PCR revealed cordycepin inhibited UVB-induced MMP-1 and -3 expressions in a dose-dependent manner. UVB strongly activated NF-κB activity, which was determined by IκBα degradation, nuclear localization of p50 and p65 subunit, and NF-κB binding activity. However, UVB-induced NF-κB activation and MMP expression were completely blocked by cordycepin pretreatment. These findings suggest that cordycepin could prevent UVB-induced MMPs expressions through inhibition of NF-κB activation. In conclusion, cordycepin might be used as a potential agent for the prevention and treatment of skin photoaging.
These findings suggest that emodin exerts anti-inflammatory effects in CIA mice through inhibition of the NF-κB pathway and therefore may have therapeutic value for the treatment of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.