Reactive oxygen species (ROS) contribute to the development of non-alcoholic fatty liver disease. ROS generation by infiltrating macrophages involves multiple mechanisms, including Toll-like receptor 4 (TLR4)-mediated NADPH oxidase (NOX) activation. Here, we show that palmitate-stimulated CD11b+F4/80low hepatic infiltrating macrophages, but not CD11b+F4/80high Kupffer cells, generate ROS via dynamin-mediated endocytosis of TLR4 and NOX2, independently from MyD88 and TRIF. We demonstrate that differently from LPS-mediated dimerization of the TLR4–MD2 complex, palmitate binds a monomeric TLR4–MD2 complex that triggers endocytosis, ROS generation and increases pro-interleukin-1β expression in macrophages. Palmitate-induced ROS generation in human CD68lowCD14high macrophages is strongly suppressed by inhibition of dynamin. Furthermore, Nox2-deficient mice are protected against high-fat diet-induced hepatic steatosis and insulin resistance. Therefore, endocytosis of TLR4 and NOX2 into macrophages might be a novel therapeutic target for non-alcoholic fatty liver disease.
Highlights d Alcohol consumption increases xCT expression in HEPs d xCT-derived glutamate release increases expression of mGluR5 in HSCs d mGluR5 stimulates 2-AG production in HSC to influence lipogenesis of HEPs via CB 1 R d Inhibition of xCT and mGluR5 blocks alcoholic steatosis in liver
Background and Aims
The important roles of glutamate and metabotropic glutamate receptor 5 (mGluR5) in HSCs have recently been reported in various liver diseases; however, the mechanism linking the glutamine/glutamate metabolism and mGluR5 in liver fibrosis remains unclear. Here, we report that mGluR5 activation in natural killer (NK) cells attenuates liver fibrosis through increased cytotoxicity and interferon‐γ (IFN‐γ) production in both mice and humans.
Approach and Results
Following 2‐week injection of carbon tetrachloride (CCl4) or 5‐week methionine‐deficient and choline‐deficient diet, liver fibrosis was more aggravated in mGluR5 knockout mice with significantly decreased frequency of NK cells compared with wild‐type mice. Consistently, NK cell–specific mGluR5 knockout mice had aggravated CCl4‐induced liver fibrosis with decreased production of IFN‐γ. Conversely, in vitro activation of mGluR5 in NK cells significantly increased the expression of anti‐fibrosis‐related genes including Ifng, Prf1 (perforin), and Klrk1 (killer cell lectin like receptor K1) and the production of IFN‐γ through the mitogen‐activated extracellular signal‐regulated kinase/extracellular signal‐related kinase pathway, contributing to the increased cytotoxicity against activated HSCs. However, we found that the uptake of glutamate was increased in activated HSCs, resulting in shortage of extracellular glutamate and reduced stimulation of mGluR5 in NK cells. Consequently, this could enable HSCs to evade NK cell cytotoxicity in advanced liver fibrosis. In vivo, pharmacologic activation of mGluR5 accelerated CCl4‐induced liver fibrosis regression by restoring NK cell cytotoxicity. In humans, mGluR5 activation enhanced the cytotoxicity of NK cells isolated from healthy donors, but not from patients with cirrhosis with significantly reduced mGluR5 expression in NK cells.
Conclusions
mGluR5 plays important roles in attenuating liver fibrosis by augmenting NK cell cytotoxicity, which could be used as a potential therapeutic target for liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.