Background:The underlying mechanisms involved in the activation of hypoxia-inducible factor-1 (HIF-1) in gastric cancer remain unclear. As nuclear factor-κB (NF-κB) as well as HIF-1 have been implicated in angiogenesis of various cancers, we investigated their relationship in gastric cancer.Methods:Nuclear expressions of HIF-1α and NF-κB/RelA were assessed in 251 human gastric carcinoma specimens by immunohistochemical tissue array analysis. Stable human gastric cancer cells, infected with a retroviral vector containing super-suppressive mutant form of IκBα (IκBαM), were used for animal studies as well as cell culture experiments. Xenografted tumours were measured and IκBαM effects on angiogenesis and HIF-1α activation were assessed by immunohistochemistry, western blotting, luciferase reporter assay, and semiquantitative reverse transcription–polymerase chain reaction. In addition, NF-κB effects on the HIF-1α degradation and synthesis were examined.Results:Hypoxia-inducible factor-1α activation positively correlated with RelA activation in clinical gastric cancer samples (P<0.001). The IκBαM overexpression suppressed tumour growth, microvessel density, and HIF-1α activation in xenografted tumours. Cell culture experiments showed that hypoxia-induced HIF-1α expression was reduced by NF-κB inhibition under hypoxic conditions at the translational level.Conclusion:The hypoxia-dependent activation of the NF-κB/HIF-1α/VEGF pathway contributes, at least in part, to gastric cancer promotion via enhancement of angiogenesis.
BackgroundAlthough FOXO transcription factors may have an anti-angiogenic role, little is known about their role in tumor angiogenesis. The present study was performed to investigate the correlation between the constitutive expression of phosphorylated FOXO1 (pFOXO1) and angiogenesis in gastric cancer.MethodsImmunohistochemistry was performed on tissue array slides containing 272 gastric carcinoma specimens, and the correlations between the cytoplasmic pFOXO1 expression in gastric cancer cells and CD34-immunopositive microvessel area (MVA) or the expressions of angiogenesis-related molecules were analyzed. In vitro analyses with Western blotting and semiquantitative reverse transcription-polymerase chain reaction were performed using the stable SNU-638 gastric cancer cell line transfected with lentivirus-delivered FOXO1 short hairpin RNA.ResultsThe cytoplasmic expression of pFOXO1 in tumor cells was observed in 85% of gastric carcinoma cases, and was found to be positively associated with higher MVA (P = 0.048). Moreover, pFOXO1 expression was positively correlated with the expressions of several angiogenesis-related proteins, including hypoxia inducible factor-1α (HIF-1α, P = 0.003), vessel endothelial growth factor (P = 0.004), phosphorylated protein kinase B (P < 0.001), and nuclear factor-κB (P = 0.040). In contrast, the expression of pFOXO1 was not correlated with that of phosphorylated signal transducer and activator of transcription 3 or β-catenin. In addition, cell culture experiments showed that FOXO1 suppression increased the mRNA and protein expressions of HIF-1α.ConclusionOur results suggest that pFOXO1 expression in cancer cells plays a role in gastric cancer angiogenesis via mechanisms involving various angiogenesis-related molecules. Animal experiments are needed to confirm the anti-angiogenic role of FOXO1 in human gastric cancer.
Purpose: This study aimed to elucidate the clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. Methods: The immunohistochemistry of CD3 and CD8 was performed on 265 human colorectal cancer tissues to investigate the tumor-infiltrating lymphocytes using Immunoscore. The correlation between Immunoscore and clinicopathological characteristics, including survival rates, was elucidated. In addition, the impact of tumor-infiltrating lymphocytes on programmed death-ligand 1 (PD-L1) protein expression was evaluated through immunohistochemistry. Results: Of the 265 colorectal cancer tissues, 40.8% had high Immunoscore, while 59.2% had low Immunoscore. A high Immunoscore was significantly correlated with favorable tumor behaviors, including lower rates of vascular, lymphatic, and perineural invasion; lymph node metastasis; and distant metastasis. PD-L1 expressions of tumor and immune cells were significantly higher in patients with high Immunoscore than in those with low Immunoscore. In addition, colorectal cancer tissues with high CD8-positive lymphocytes showed higher PD-L1 expressions of tumor and immune cells than colorectal cancer tissues with low CD8-positive lymphocytes. There was a significant correlation between high Immunoscore and better overall survival. However, there was no significant difference in survival rate according to PD-L1 expressions of tumor and immune cells in high and low Immunoscore subgroups. Conclusions: Taken together, our results showed that high tumor-infiltrating lymphocytes were significantly correlated with favorable tumor behaviors and better survival. In addition, there was a significant correlation between PD-L1 expression and tumor-infiltrating lymphocytes.
PurposeWe previously reported that forkhead transcription factors of the O class 1 (FOXO1) expression in gastric cancer (GC) was associated with angiogenesis-related molecules. However, there is little experimental evidence for the direct role of FOXO1 in GC. In the present study, we investigated the effect of FOXO1 on the tumorigenesis and angiogenesis in GC and its relationship with SIRT1.Materials and MethodsStable GC cell lines (SNU-638 and SNU-601) infected with a lentivirus containing FOXO1 shRNA were established for animal studies as well as cell culture experiments. We used xenograft tumors in nude mice to evaluate the effect of FOXO1 silencing on tumor growth and angiogenesis. In addition, we examined the association between FOXO1 and SIRT1 by immunohistochemical tissue array analysis of 471 human GC specimens and Western blot analysis of xenografted tumor tissues.ResultsIn cell culture, FOXO1 silencing enhanced hypoxia inducible factor-1α (HIF-1α) expression and GC cell growth under hypoxic conditions, but not under normoxic conditions. The xenograft study showed that FOXO1 downregulation enhanced tumor growth, microvessel areas, HIF-1α activation and vascular endothelial growth factor (VEGF) expression. In addition, inactivated FOXO1 expression was associated with SIRT1 expression in human GC tissues and xenograft tumor tissues.ConclusionOur results indicate that FOXO1 inhibits GC growth and angiogenesis under hypoxic conditions via inactivation of the HIF-1α–VEGF pathway, possibly in association with SIRT1. Thus, development of treatment modalities aiming at this pathway might be useful for treating GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.