This paper presents a study of the effect of varying the roll gap of oval pass in round-ovalround pass sequence on the interfacial slip of workpiece, entrance and exit velocities, stresses and roll load that the workpiece experiences during rolling, by applying analytical method, finite element simulation and verification through hot bar rolling tests. The results have shown that the roll gap variation of oval pass affects the interfacial slip of workpiece along the groove contact and the specific roll pressure. The optimum conditions in terms of minimum interfacial slip and minimum specific roll pressure, which might influence the maximum groove life, is obtained when the subsequent round pass is completely filled.
This paper presents a study of the effect of rolling temperature, roll gap (pass height), initial specimen size and steel grades of specimens on the roll force in round-oval-round pass sequence by applying approximate method and verifications through single stand pilot rod rolling tests. The results show that the predicted roll forces are in good agreement with the experimentally measured ones. The approximate model is independent of the change of roll gap, specimen size and temperature. Thus, the generality of the prediction methodology employed in the approximate model is proven. This study also demonstrates that Shida's constitutive equation employed in the approximate model needs to be corrected somehow to be applicable for the medium and high carbon steels in a lower temperature interval (700-900·C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.