The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.
As a part of the efforts to develop the risk-informed regulation, alternative rulemaking of 10CFR50.46 is underway. In the rule, USNRC divided the current spectrum of LOCA break sizes into two regions, by determining a transition break size (TBS), and the LOCAs for any breaks larger than TBS would be regarded as beyond design basis accident (BDBA). A combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of BDBAs. The performance of the APR-1400 emergency core cooling system (ECCS) performance was assessed against large break LOCA applying CDPP. It was confirmed that current APR-1400 ECCS design has capability to mitigate BDB LOCA by analyzing ECCS cooling performance for BDB LOCA. The proposed CDPP was also applied to design changes of the emergency diesel generator (EDG) start time extension and power uprates with simplified assumption that the probabilistic safety assessment (PSA) data are still valid. By assumptions and considerations, the CDPP to assess ECCS performance for plant design modification was reduced to calculating conditional exceedance probability (CEP) of one sequence and comparing allowable value. The allowable CEP was used to determine whether the design change is acceptable or not, and discussions were made for acceptable nuclear power plant changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.