Most multi-phase pumps used in crude oil production have been developed to satisfy certain pressure specifications. In the design of these pumps, the flow characteristics of the posterior stage are different from those of the prior stage. For this reason, the design of the second stage needs to be supplemented. To optimize performance in this stage, multi-objective optimization to simultaneously increase pressure and efficiency is reported in this article. Flow analyses of the single and multiple phases of the multi-phase pump were conducted by solving three-dimensional steady Reynolds-averaged Navier-Stokes equations. For the numerical optimization, two design variables related to the blade inlet angle were selected. The impeller and the diffuser blades were optimized using a systematic optimization technique combined with a central composite method and a hybrid multi-objective evolutionary algorithm coupled with a surrogate model. The selected optimal model yielded better hydrodynamic performance than the base model, and reasons for this are investigated through internal flow field analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.