HPV-positive oropharyngeal cancer patients experience significantly lower locoregional recurrence and higher overall survival in comparison with HPV-negative patients, especially among those who received radiation therapy. The goal of the present study is to investigate the molecular mechanisms underlying the differential radiation sensitivity between HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Here, we show that HPV-negative HNSCC cells exhibit increased glucose metabolism as evidenced by increased production of lactate, while HPV-positive HNSCC cells effectively utilize mitochondrial respiration as evidenced by increased oxygen consumption. HPV-negative cells express HIF1α and its downstream mediators of glucose metabolism such as hexokinase II (HKII) and carbonic anhydrase IX (CAIX) at higher levels, while the expression level of cytochrome c oxidase (COX) was noticeably higher in HPV-positive HNSCC. In addition, the expression levels of pyruvate dehydrogenase kinases (PDKs), which inhibit pyruvate dehydrogenase activity, thereby preventing entry of pyruvate into the mitochondrial tricarboxylic acid (TCA) cycle, were much higher in HPV-negative HNSCC compared to those in HPV-positive cells. Importantly, a PDK inhibitor, dichloroacetate, effectively sensitized HPV-negative cells to irradiation. Lastly, we found positive interactions between tonsil location and HPV positivity for COX intensity and COX/HKII index ratio as determined by immunohistochemical analysis. Overall survival of patients with HNSCC at the tonsil was significantly improved with an increased COX expression. Taken together, the present study provides molecular insights into the mechanistic basis for the differential responses to radiotherapy between HPV-driven vs. spontaneous or chemically induced oropharyngeal cancer.
5-Fluorouracil (5-FU) is commonly used for the therapy of colon cancer; however, acquired resistance to 5-FU is a critical barrier to successful treatment and the primary cause of chemotherapy failure. Epithelialmesenchymal transition (EMT) is a process whereby cells undergo alterations in morphology and molecular characteristics promoting tumor progression and metastasis. Accumulating evidence shows that transition from epithelial to mesenchymal phenotype in cancer cells is associated with their resistance to chemotherapy. However, it is still poorly understood whether EMT is involved in acquired resistance to 5-FU. In this study, we developed an in vitro cell model, 5-FU-resistant HT-29 colon cancer cells, and characterized the differences in cellular morphology and molecular alterations between parental and resistant cells. In accord with mesenchymal-like morphology of 5-FU-resistant HT-29 cells, the expression of the mesenchymal marker fibronectin was significantly increased in these cells in comparision with that in the parental cells. Of interest, we also found a marked increase in the expression of EMT-inducing transcription factors Twist, Zeb1, and Zeb2. Finally, 5-FU-resistant cells showed enhanced migration in comparison with parental HT-29. Taken together, these results indicate that EMT could be associated with 5-FU resistance acquired by HT-29 cells. A specific role of each transcription factor found in this study will require further investigation.
Abstract:Silymarin is a flavonoid extracted from the milk thistle Silybum marianum. It has been reported to prevent liver injuries induced by various chemicals or toxins. Our recent study suggested that silymarin induces hepatic synthesis of glutathione by increasing cysteine availability, which may consequently contribute to increased antioxidant capacity of the liver. In the present study, we investigated the effects of silymarin on acute liver injury induced by restraint stress. Silymarin (100 mg/kg) was orally administered to BALB/c mice every 12 h (3 times in total). After the last dose, mice were subjected to restraint stress for 6 h, and serum levels of aspartate and alanine aminotransferases, and hepatic levels of lipid peroxidation were determined. Hepatic levels of sulfur-containing metabolites such as methionine, S-adenosylmethionine, cysteine, and glutathione were also measured. The level of pro-inflammatory mediators in both liver and serum was determined. To study the mechanism of the effects of silymarin, we assessed Jun N-terminal kinase (JNK) activation and apoptotic signaling. Restraint stress induced severe oxidative stress and increased mRNA levels of pro-inflammatory mediators; both effects of restraint stress were significantly inhibited by silymarin. Moreover, administration of silymarin significantly prevented acute liver injury induced by restraint stress by blocking JNK activation and subsequently apoptotic signaling. In conclusion, these results suggest that the inhibition of restraint stress-induced liver injury by silymarin is due at least in part to its anti-oxidant activity and its ability to suppress the inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.