In mobile computing systems, the limited amount of main memory space leads to page swap operation overhead and data duplication in both main memory and secondary storage. Furthermore, SQLite write operations in mobile devices such as smartphones and tablet PCs tend to frequently overwrite data to storage, significantly degrading performance. Thus, this article presents a unified memory-storage structure that is optimized for mobile devices and blurs the boundary between the existing main memory layer and secondary storage layer. This structure can eliminate the conventional page-swap operations that cause significant performance degradation and support fast program execution time. The unified memory-storage structure consists of a dynamic RAM (DRAM) and phase change memory (PCM) -based dual buffering module, a hybrid unified memory-storage array consisting of DRAM and NAND Flash memory, and an associated unified storage translation layer devised for the memory address and file translation mechanism as a system software module. This hybrid array of non-volatile memories is formed as a single memory-disk integrated storage space that can be logically divided into static and dynamic spaces. Experimental results show that the overall performance of the hybrid unified memory-storage system with the buffering structure increases by around 13% and power consumption is also improved by 35%, compared to current mobile system.
This article presents a novel prefetching mechanism for memory-intensive workloads used in large-scale data centers. We design a negative-AND-flash/dynamic random-access memory (DRAM) hybrid memory architecture as a cost-effective memory architecture to resolve the scalability and power consumption problems of a DRAM-based model. A smart prefetching mechanism based on a cluster-management scheme to cope with dynamically varying and complex access patterns of any given application is designed for maximizing the performance of the DRAM. In this article, we propose a new concept for page management, called a cluster, which prefetches data in our hybrid memory architecture. The cluster management is based on a self-learning scheme on dynamically changeable access patterns by considering any correlation between missed pages. Experimental results show that the overall performance is significantly improved in relation to hit rate, execution time, and energy consumption. Namely, our proposed model can enhance the hit rate by 15% and reduce the execution time by 1.75 times. In addition, we can save energy consumption by around 48% by cutting the number of flushed pages to about an eighth of that in a conventional system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.