ComGC is a cell surface-localized protein required for DNA binding during transformation in Bacillus subtilis. It resembles type IV prepilins in its N-terminal domain, particularly in the amino acid sequence surrounding the processing cleavage sites of these proteins. ComC is another protein required for DNA binding, which resembles the processing proteases that cleave type IV prepilins. We show here that ComGC is processed in competent cells and that this processing requires ComC. We also demonstrate that the PilD protein of Neisseria gonorrhoeae, a ComC homologue, can process ComGC in Escherichia coli, and that the ComC protein itself is the only B. subtilis protein needed to accomplish cleavage of ComGC in the latter organism. Based on NaOH-solubility studies, we have shown that in the absence of ComC, but in the presence of all other competence proteins, B. subtilis is incapable of correctly translocating ComGC to the outer face of the cell membrane. Finally, we show that ComGC can be cross-linked to yield a form with higher molecular mass, possibly a dimer, and present evidence suggesting that formation of the higher mass complex takes place in the membrane, prior to translocation. Formation of this complex does not require ComC or any of the comG products, other than ComGC itself.
The seven proteins encoded by the comG operon ofBacillus subtilis exhibit similarity to gene products required for the assembly of type 4 pili and for the secretion of certain proteins in gram-negative bacteria. Although polar transposon insertions in comG result in the loss of transformability and in the failure of cells grown through the competence regimen to bind DNA, it was not known whether the ComG proteins are all required for competence. We have constructed strains missing each of these proteins individually and found that they are all nontransformable and fail to bind transforming DNA to the cell surface. The implications of these findings are discussed.
Cell survival and deoxyribonucleic acid (DNA) degradation wave measured for wild-type Escherichia coli B251 cells after exposure to different concentrations of ozone. The results show that extensive breakdown of DNA occurs after ozonation and that the extent of ozone-induced DNA degradation generally correlates with the colony-forming ability of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.