This paper introduces an accurate and robust facial expression recognition (FER) system. For feature extraction, the proposed FER system employs stepwise linear discriminant analysis (SWLDA). SWLDA focuses on selecting the localized features from the expression frames using the partial F-test values, thereby reducing the within class variance and increasing the low between variance among different expression classes. For recognition, the hidden conditional random fields (HCRFs) model is utilized. HCRF is capable of approximating a complex distribution using a mixture of Gaussian density functions. To achieve optimum results, the system employs a hierarchical recognition strategy. Under these settings, expressions are divided into three categories based on parts of the face that contribute most toward an expression. During recognition, at the first level, SWLDA and HCRF are employed to recognize the expression category; whereas, at the second level, the label for the expression within the recognized category is determined using a separate set of SWLDA and HCRF, trained just for that category. In order to validate the system, four publicly available data sets were used, and a total of four experiments were performed. The weighted average recognition rate for the proposed FER approach was 96.37% across the four different data sets, which is a significant improvement in contrast to the existing FER methods.
In this paper, a novel feature selection method based on the normalization of the well-known mutual information measurement is presented. Our method is derived from an existing approach, the max-relevance and minredundancy (mRMR) approach. We, however, propose to normalize the mutual information used in the method so that the domination of the relevance or of the redundancy can be eliminated. We borrow some commonly used recognition models including Support Vector Machine (SVM), k-Nearest-Neighbor (kNN), and Linear Discriminant Analysis (LDA) to compare our algorithm with the original (mRMR) and a recently improved version of the mRMR, the Normalized Mutual Information Feature Selection (NMIFS) algorithm. To avoid data-specific statements, we conduct our classification experiments using various datasets from the UCI machine learning repository. The results confirm that our feature selection method is more robust than the others with regard to classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.