The purpose of this study was to investigate the effects of balance ability improvement exercise program which applied to the elderly people for increasing balance, stability and range of motion. Ten elderly people and ten university students were recruited as the subjects. Kinematic data were collected by seven real-time infrared cameras while subjects walk stair descent as a pre-test. Korean folk dance exercise program was applied to the elderly for 12 weeks. Same experiment on stair descent walk was performed as post-test. Results indicated that CM movement and selected joint angle patterns of elderly group after treatment changed to the similar patterns of young group. However, ankle joint angle and vertical GRF of elderly group after treatment also increased compared to those of the elderly group before treatment. This might be explained by the fact that elderly used a different walking strategy which maximize support base for increasing stability. Overall, these results indicated that the exercise treatment may affect to adapt and improve the gait pattern of stair descent of elderly people.
We aimed to analyze the muscle activity of adolescent patients with idiopathic scoliosis during gait and develop the wearing of musculo-skeletal functional garment by applying the principle of sports taping based on the result of the analysis. We selected 20 male students between the ages of 13 and 18 and divided them into 2 groups: one group consisted of 10 patients with idiopathic scoliosis <20 degrees of Cobb's Angle: the other group had 10 normal students. Using, we measured and analyzed the muscle activity of 8 different regions: left and right latissimus dorsi, left and right thoracolumbar fascia, left and right gluteus medius, and left and right biceps femoris during gait. Our results can be summarized as follows: Firstly, in patients with idiopathic scoliosis, the gait showed a significantly low activity of the right latissimus dorsi muscle when the left foot was supported on the ground(p<.05). Secondly, in the overall gait cycle, the patients showed a higher activity of the right thoracolumbar fascia and right gluteus medius than that seen in the normal students: however, this difference was not statistically significant. Thirdly, by applying sports taping on the bisis of the results, this study developed the wearing of musculo-skeletal functional garment that could maximize the stimuli of the right latissimus dorsi and alleviate muscle contraction of the right thoracolumbar fascia and right gluteus medius, while expanding the spinal line upward and downward, by focusing on the difference between left and right muscular strength of the muscle activity of the bright latissimus dorsi. Overall, we expect that by wearing of musculo-skeletal functional garment, the muscular functions in adolescents with idiopathic scoliosis.
The purpose of this study is to develop functional garment wear for patients with adolescent idiopathic scoliosis (AIS) and to analyze changes in Cobb's angle and the COM of the body and the pelvis during gaits in order to identify the effects of the functional garment wear. The subjects of the study were 9 patients with adolescent idiopathic scoliosis, who wore the functional garment wear for 12 weeks 12 hours a day. As for the research methods, the scoliotic angle was measured using Cobb's angle, and the shoulder angle and the COM of the body and the pelvis during gaits for the AIS patients were calculated using five high speed infrared cameras. As a result of the study, it was found that the scoliotic angle (Cobb's angle) was reduced significantly and that the smaller the original scoliotic angle, the greater the effects. As for the shoulder motion angle, a significantly larger angle was found 12 weeks after wearing the functional garment wear, and particularly, larger shoulder motion (activity) was observed at the phase of right heel contact. As for the motion of the body and the pelvis, the moving ranges were significantly reduced after wearing the functional garment wear for 12 weeks, which stabilized gait in the patients with adolescent idiopathic scoliosis.
The purpose of this study was to evaluate the effect of angle change of forefoot's adhesive outsole on the electromyographic activity (EMG) of the erector spinae and selected lower limbs muscle during downhill walking over -20 o ramp. Thirteen male university students (age: 25.4±3.9 yrs, height: 176.2±5.1 cm, weight: 717.4±105.0 N) who have no musculoskeletal disorder were recruited as the subjects. To assess the myoelectric activities of selected muscles, six of surface EMG electrodes with on-site preamplification circuitry were attached to erector spinae (ES), rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), lateral gastrocnemius (LG), and medial gastrocnemius (MG). To obtain maximum EMG levels of the selected muscles for normalization, five maximum effort isometric contraction were performed before the experimental trials. Each subject walked over 0 o and 20 o ramp with three different forefeet's EVA outsole (0, 10, 20 o ) in random order at a speed of 1.2±0.1 m/s. For each trial being analyzed, five critical instants and four phases were identified from the recording. The results of this study showed that the average muscle activities of MG and LG decreased in 20 o shoes compared to 0 o and 10 o ones in the initial double limb stance (IDLS). In initial single limb stance (ISLS) phase, the average muscle activities of ES increased with the angle of forefoot's adhesive outsole, indicating that the increment of shoes' angle induce upper body to flex anteriorly in order to maintain balance of trunk. In terminal double limb stance (TDLS) phase, average muscle activities of TA significantly increased in 20 o outsole compared to 0 o and 10 o ones. There was no external forces acting on the right foot other than the gravity during terminal single limb stance (TSLS) phase, all muscles maintained moderate levels of activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.