Human activating signal cointegrator 1 (hASC-1) was originally isolated as a transcriptional coactivator of nuclear receptors. Here we report that ASC-1 exists as a steady-state complex associated with three polypeptides, P200, P100, and P50, in HeLa nuclei; stimulates transactivation by serum response factor (SRF), activating protein 1 (AP-1), and nuclear factor B (NF-B) through direct binding to SRF, c-Jun, p50, and p65; and relieves the previously described transrepression between nuclear receptors and either AP-1 or NF-B. Interestingly, ectopic expression of Caenorhabditis elegans ASC-1 (ceASC-1), an ASC-1 homologue that binds P200 and P100, like hASC-1, while weakly interacting only with p65, in HeLa cells appears to replace endogenous hASC-1 from the hASC-1 complex and exerts potent dominant-negative effects on AP-1, NF-B, and SRF transactivation. In addition, neutralization of endogenous P50 by single-cell microinjection of a P50 antibody inhibits AP-1 transactivation; the inhibition is relieved by coexpression of wild-type P50, but not of P50⌬KH, a mutant form that does not interact with P200. Overall, these results suggest that the endogenous hASC-1 complex appears to play an essential role in AP-1, SRF, and NF-B transactivation and to mediate the transrepression between nuclear receptors and either AP-1 or NF-B in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.