Adsorption equilibria of single components for pure methane, ethane, ethylene, hydrogen, and nitrogen
onto activated carbon adsorbent (Calgon Co.) were measured. The results were obtained with a static
volumetric method at 293.15 K, 303.15 K, and 313.15 K and at pressures up to 2 MPa. Experimental
data were correlated by the Langmuir−Freundlich equation. Isosteric enthalpies of adsorption were
calculated and shown according to surface loading.
The adsorption characteristics of SO2 were studied with KOH-impregnated granular activated carbon (K-IAC). To confirm selective SO2 adsorptivity of K-IAC using a fixed bed adsorption column, experiments were conducted on the effects of KOH and of linear velocity, temperature, and concentration. In addition, changes in features before and after adsorption were observed by utilizing FTIR, XRD, ToF-SIMS, and AES/SAM, examining the surface chemistry. K-IAC adsorbed 13.2 times more SO2 than did general activated carbon (GAC). The amount of SO2 adsorbed increased as linear velocity and concentration increased and as temperature decreased. At lower temperature, the dominant reaction between KOH and SO2 produces K2-SO3 and H2O. Any H2O remaining on the surface is converted into H2SO4 as SO2 and O2 are introduced. Then, the KOH and SO2 reaction produces K2SO4 and H2O. The surface characterization results proved that adsorption occurred through chemical reaction between KOH and SO2. The SO2 adsorbed K-IAC exists in the form of stable oxide crystal, K2SO3 and K2SO4, due to potassium. The basic feature given to the surface of activated carbon by KOH impregnation was confirmed to be acting as the main factor in enhancing SO2 adsorptivity.
This study identifies surface chemistry characteristics based on competitive behavior in the simultaneous adsorption behavior of NOx (NO rich) and SO2 using KOH impregnated activated carbon (K-IAC) in excess O2. The NOx and SO2 adsorption on K-IAC occurred mainly through the acid-base reaction. The high surface area with many pores of activated carbon acted as storage places of oxide crystal produced from NOx and SO2 adsorption. KOH, an impregnant, provided the selective adsorption sites to NOx and SO2, enabling simultaneous adsorption. However, larger amounts of SO2, with higher adsorption affinity to K-IAC compared to NOx, were adsorbed in a NOx/SO2 coexistent atmosphere. Oxygen was chemisorbed to K-IAC, which enhanced the selective adsorptivity for NO. In binary-component adsorption of NOx and SO2 on K-IAC, oxide crystals such as KNO, (x = 2,3) and K2SOx (x = 3,4) were dominantly formed through two different adsorption mechanisms by chemical reacton. Depending on the extent that oxide crystals blocked pores, compositions of oxide crystals were distributed differently according to depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.