Despite the theoretically high energy density, the practical energy density of Li-S batteries at the moment does not meet the demand due to low sulfur (S) loading (<2 mg cm −2 ), large electrolyte amount (electrolyte/sulfur ratio >20 µL mg −1 ), and excess lithium (Li) metal use (>10 times excess). [5] In particular, large electrolyte usage (flooding) greatly diminishes the practical energy density of Li-S batteries. Due to the intrinsic solution-based redox chemistry, however, many of the challenges arise from minimizing the electrolyte/ sulfur ratio (E/S ratio). Since soluble lithium polysulfide (LiPS, Li 2 S x when 2 < x ≤ 8) intermediates are self-redox mediating, the decrease in the LiPS dissolution causes a sluggish sulfur conversion and high polarization. [6] Next, the morphology of lithium sulfide (Li 2 S) electrodeposition and the kinetics of the re-oxidation are affected by the sulfur species solubility as well. [7] Hence, uncontrolled precipitation and continual accumulation of Li 2 S limit the discharge capacity and further passivate the cathode interface throughout the cycling. [8] Reducing the electrolyte volume exacerbates not only the cathode performance but also the anode stability. A high reactivity and an infinite volume change of the Li metal anode cause the incessant decomposition of the electrolyte. Therefore, the lean electrolyte condition accelerates the increase of the cell resistance and provokes earlier performance failure compared to the flooding electrolyte system. [9] Manipulating electrolyte materials (solvents, salt anions, and additives) has a considerable impact on the electrochemical performance of Li-S batteries. There have been studies in which solvents with high Gutmann donor numbers (DNs) form strong interactions with lithium ions (Li + ) and promote the solvation of polysulfide (PS) anions. The increased LiPS solubility facilitates the solution-mediated reaction pathway, enabling fast reaction kinetics and high sulfur utilization. [10] Furthermore, the same merits can also be achieved with salt anions having high-DNs [11] or additives promoting ionic solvation. [12] Under a lean electrolyte regime, the role of highly solvating electrolytes becomes more prominent because of the limited solubility of sulfur species. For example, high-DN solvents can enhance the sulfur utilization under the reduced electrolyte amount by promoting the charge/discharge reactions. [13] Despite this fact, the Minimizing electrolyte use is essential to achieve high practical energy density of lithium-sulfur (Li-S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO 3 − as a high-donor-number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean-electrolyte Li-S batteries. The NO 3 − anion eleva...
The long-term cycling of anode-free Li-metal cells (i.e., cells where the negative electrode is in situ formed by electrodeposition on an electronically conductive matrix of lithium sourced from the positive electrode) using a liquid electrolyte is affected by the formation of an inhomogeneous solid electrolyte interphase (SEI) on the current collector and irregular Li deposition. To circumvent these issues, we report an atomically defective carbon current collector where multivacancy defects induce homogeneous SEI formation on the current collector and uniform Li nucleation and growth to obtain a dense Li morphology. Via simulations and experimental measurements and analyses, we demonstrate the beneficial effect of electron deficiency on the Li hosting behavior of the carbon current collector. Furthermore, we report the results of testing anode-free coin cells comprising a multivacancy defective carbon current collector, a LixNi0.8Co0.1Mn0.1-based cathode and a nonaqueous Li-containing electrolyte solution. These cells retain 90% of their initial capacity for over 50 cycles under lean electrolyte conditions.
In article number 2000493, Hee‐Tak Kim and co‐workers demonstrate the dual functionality of lithium nitrate in lean‐electrolyte lithium–sulfur batteries. Based on its high electron donicity, the nitrate anion enhances sulfur utilization and prevents electrolyte decomposition, enabling both high cycling capacity and long‐term stability of lean‐electrolyte lithium‐sulfur batteries.
The pulverization of lithium metal electrodes during cycling recently has been suppressed through various techniques, but the issue of irreversible consumption of the electrolyte remains a critical challenge, hindering the progress of energy-dense lithium metal batteries. Here, we design a single-ion-conductor-based composite layer on the lithium metal electrode, which significantly reduces the liquid electrolyte loss via adjusting the solvation environment of moving Li+ in the layer. A Li||Ni0.5Mn0.3Co0.2O2 pouch cell with a thin lithium metal (N/P of 2.15), high loading cathode (21.5 mg cm−2), and carbonate electrolyte achieves 400 cycles at the electrolyte to capacity ratio of 2.15 g Ah−1 (2.44 g Ah−1 including mass of composite layer) or 100 cycles at 1.28 g Ah−1 (1.57 g Ah−1 including mass of composite layer) under a stack pressure of 280 kPa (0.2 C charge with a constant voltage charge at 4.3 V to 0.05 C and 1.0 C discharge within a voltage window of 4.3 V to 3.0 V). The rational design of the single-ion-conductor-based composite layer demonstrated in this work provides a way forward for constructing energy-dense rechargeable lithium metal batteries with minimal electrolyte content.
A sulfur-enriched solid electrolyte interface (SEI) is known to enhance the cycling stability of a Li metal electrode, however, using the conventional additive approach, the positive effect is hard to maintain during prolonged cycling. Here, we present a method of forming a sulfur-enriched SEI in sustainable manner during battery cycling. A polymer electrolyte layer containing a sulfur chain is inserted between the lithium metal electrode and liquid electrolyte phase. The interfacial layers of the poly(α-lipoic acid-co-sulfur) readily form Li 2 S and Li 2 S 2 at the Li metal surface, inducing dendrite-free, planar Li deposition beneath the layer. As a result of the regeneration of the sulfur-enriched SEI during repeated cycling, a Li metal electrode with the interfacial layer in a Li symmetric cell operated for more than 400 cycles at a high current density of 3 mA cm −2 and a high areal capacity of 3 mAh cm −2 . The SEIforming interfacial layer approach provides sustainable protection of the Li metal electrode during prolonged cycling in Li metal batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.