The binder in hot-mix asphalt (HMA) is aged (oxidized) in a short-time period during haul-and-queue in the field. Since the oxidative aging of asphalt is a complex chemical process, it is difficult to define the asphalt aging as a function of limited variables. When comparing the same types of asphalt mixes, however, the mix temperature (T) and time (t) kept at the T will be the primary source of variation affecting aging levels of the binder in the mix. Since the binder aging level is not easy to estimate without measuring a physical property, this study concentrated on developing an aging quantity (AQ) model for estimating aging levels of the binder in the mix based on T and t. The loose asphalt mixes were artificially short-term aged at various Ts for different t; 130, 160, and 180 °C for 1, 2, 4, and 8 h. The absolute viscosity (AV) values, which represent aging levels of the recovered binder after each short-term aging (SA) of normal dense-graded mix, were used for regression with AQ values computed by the AQ model. The best-fit AQ model was selected by trial-and-error regression iterations between measured AV and computed AQ. The AQ was then used to estimate AV (EAV) of the aged asphalts in various normal asphalt mixes. It was found that the AQ was useful for estimating AV of the binder in the SA-treated mix, and the EAV by AQ showed an excellent correlation with the measured AV with R2 > 0.99. Therefore, it was possible to conclude that the AQ could be used to predict aging level of various short-term-aged normal asphalt mixes if the materials sources were limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.