Background
This study evaluated whether an addition of bevacizumab to erlotinib improves clinical outcomes in patients with advanced EGFR‐mutated non–small cell lung cancer (NSCLC).
Methods
This is an open‐label, multicenter, randomized Phase 2 study in South Korea. Chemonaïve patients with Stage IIIB/IV NSCLC with EGFR 19 deletion or L858R mutation were eligible. Asymptomatic brain metastasis (BM) was enrolled without local treatment. Patients received either erlotinib plus bevacizumab or erlotinib.
Results
Between December 2016 and March 2019, 127 patients were randomly assigned to receive erlotinib plus bevacizumab (n = 64) or erlotinib (n = 63). Fifty‐nine (46.5%) patients had baseline BM. Fewer patients in the erlotinib plus bevacizumab arm received radiotherapy for BM than in the erlotinib arm (10.3% vs. 40.0%). A trend toward longer progression‐free survival (PFS) was observed in the erlotinib plus bevacizumab arm compared with the erlotinib alone arm; however, it was not statistically significant (median PFS, 17.5 months vs. 12.4 months; hazard ratio [HR], 0.74; 95% CI, 0.51–1.08; p = .119). The unplanned subgroup analysis showed a longer PFS with erlotinib plus bevacizumab in patients with BM (median PFS, 18.6 months vs. 10.3 months; HR, 0.54; 95% CI, 0.31–0.95; p = .032). Grade 3 or worse adverse events occurred in 56.6% of the erlotinib plus bevacizumab arm and 20.6% of the erlotinib arm.
Conclusions
Although it was not statistically significant, a trend to improvement in PFS was observed in patients with erlotinib plus bevacizumab compared to erlotinib alone.
Plain Language Summary
A randomized Phase 2 study compared erlotinib with or without bevacizumab in previously untreated patients with advanced non–small cell lung cancer with EGFR mutation. The erlotinib plus bevacizumab failed to improve median progression‐free survival compared with the erlotinib alone. However, the progression‐free survival benefit from erlotinib plus bevacizumab was found in patients with brain metastasis with no severe hemorrhagic adverse effects.
Background: Proton beam therapy (PBT), as a neoadjuvant chemoradiotherapy (nCRT) modality, is expected to result in better outcomes than photon-based radiotherapy (RT) for esophageal cancer, particularly adenocarcinoma. This study reports the results of nCRT for locally advanced esophageal squamous cell carcinoma (ESCC) using both modalities. Methods: We retrospectively reviewed the records of patients who underwent nCRT for ESCC between 2001 and 2020. A median of 41.4 Gy or cobalt gray equivalents of radiation was delivered using either photons or protons, with concurrent chemotherapy. Dosimetric and clinical parameters were compared between the two groups. Results: Of the 31 patients, the lungs and heart of the proton group (n = 15) were exposed to significantly less radiation compared to the photon group (n = 16). No significant differences in short-term postoperative outcomes or lymphocyte count were observed between the groups, and there were no significant differences between the photon and proton groups in 2-year overall survival (67.8% vs. 68.6%, p = 0.867) or 2-year disease-free survival (33.3% vs. 34.5%, p = 0.749), with a median follow-up of 17 months. Conclusions: PBT provided a significant dosimetric benefit over photon-based RT during nCRT for ESCC; however, it did not improve clinical outcomes.
Background: Prediction of resistance mechanisms for epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) remains challenging. Thus, we investigated whether resistant cancer cells that expand shortly after EGFR-TKI treatment would eventually cause the resistant phenotype. Methods: We generated two EGFR-mutant lung cancer cell lines resistant to gefitinib (PC9GR and HCC827GR). The parent cell lines were exposed to short-term treatment with gefitinib or paclitaxel and then were assessed for EGFR T790M mutation and C-MET expression. These experiments were repeated in vivo and in clinically relevant patient-derived cell (PDC) models. For validation in clinical cases, we measured these gene alterations in plasma circulating tumor DNA (ctDNA) before and 8 weeks after starting EGFR-TKIs in four patients with EGFR-mutant lung cancer. Results: T790M mutation was only detected in the PC9GR cells, whereas C-MET amplification was detected in the HCC827GR cells. The T790M mutation level significantly increased in PC9 cells after short-term treatment with gefitinib but not in the paclitaxel. C-MET mRNA expression was only significantly increased in gefitinib-treated HCC827 cells. We confirmed that the C-MET copy number in HCC827 cells that survived after short-term gefitinib treatment was significantly higher than that in dead HCC827 cells. These findings were reproduced in the in vivo and PDC models. An early on-treatment increase in the plasma ctDNA level of these gene alterations was correlated with the corresponding resistance mechanism to EGFR-TKIs, a finding that was confirmed in post-treatment tumor tissues. Conclusions: Early on-treatment kinetics in resistance-related gene alterations may predict the final mechanism of EGFR-TKI resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.