Intratumoral hypoxia stimulates enrichment of breast cancer stem cells (BCSC), which are critical for metastasis and patient mortality. Here we report a metabolic adaptation that is required for hypoxia-induced BCSC enrichment and metastasis. Hypoxiainducible factors coordinately regulate expression of genes encoding phosphoglycerate dehydrogenase (PHGDH) and five downstream enzymes in the serine synthesis pathway and mitochondrial one-carbon (folate) cycle. RNAi-mediated silencing of PHGDH expression in both estrogen receptor-positive and negative breast cancer cells led to decreased NADPH levels, disturbed mitochondrial redox homeostasis, and increased apoptosis, which abrogated BCSC enrichment under hypoxic conditions. PHGDH-deficient cells exhibited increased oxidant levels and apoptosis, as well as loss of BCSC enrichment, in response to treatment with carboplatin or doxorubicin. PHGDH-deficient cells were relatively weakly tumorigenic and tumors that did form were deficient in BCSCs, abolishing metastatic capacity. Our findings highlight a role for PHGDH in the formation of secondary (recurrent or metastatic) tumors, with potential implications for therapeutic targeting of advanced cancers. Cancer Res; 76(15); 4430-42. Ó2016 AACR.
Triple-negative breast cancer (TNBC) is treated with cytotoxic chemotherapy and is often characterized by early relapse and metastasis. To form a secondary (recurrent and/or metastatic) tumor, a breast cancer cell must evade the innate and adaptive immune systems. CD47 enables cancer cells to evade killing by macrophages, whereas CD73 and PDL1 mediate independent mechanisms of evasion of cytotoxic T lymphocytes. Here, we report that treatment of human or murine TNBC cells with carboplatin, doxorubicin, gemcitabine, or paclitaxel induces the coordinate transcriptional induction of CD47, CD73, and PDL1 mRNA and protein expression, leading to a marked increase in the percentage of CD47CD73PDL1 breast cancer cells. Genetic or pharmacological inhibition of hypoxia-inducible factors (HIFs) blocked chemotherapy-induced enrichment of CD47CD73PDL1 TNBC cells, which were also enriched in the absence of chemotherapy by incubation under hypoxic conditions, leading to T cell anergy or death. Treatment of mice with cytotoxic chemotherapy markedly increased the intratumoral ratio of regulatory/effector T cells, an effect that was abrogated by HIF inhibition. Our results delineate an HIF-dependent transcriptional mechanism contributing to TNBC progression and suggest that combining chemotherapy with an HIF inhibitor may prevent countertherapeutic induction of proteins that mediate evasion of innate and adaptive antitumor immunity.
Breast cancer stem cells (BCSCs) play a critical role in tumor recurrence and metastasis. Exposure of breast cancer cells to chemotherapy leads to an enrichment of BCSCs. Here, we find that chemotherapy induces the expression of glutathione S-transferase omega 1 (GSTO1), which is dependent on hypoxia-inducible factor 1 (HIF-1) and HIF-2. Knockdown of GSTO1 expression abrogates carboplatin-induced BCSC enrichment, decreases tumor initiation and metastatic capacity, and delays tumor recurrence after chemotherapy. GSTO1 interacts with the ryanodine receptor RYR1 and promotes calcium release from the endoplasmic reticulum. Increased cytosolic calcium levels activate PYK2 → SRC → STAT3 signaling, leading to increased expression of pluripotency factors and BCSC enrichment. HIF inhibition blocks chemotherapy-induced GSTO1 expression and BCSC enrichment. Combining HIF inhibitors with chemotherapy may improve clinical outcome in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.