A bra use can reduce physiological and physical functions because of clothing pressure, which can be a problem for new senior women starting to lose physical function. The present study presents a bra top design development method for promoting new senior women’s physical activity by identifying problems related to bras’ effects on women’s health and minimizing clothing pressure. The analysis utilized the 3D scan data of 42 adult women (age range: 50s) from the 5th Size Korea Project. Bra top design elements were extracted based on new senior consumers’ needs. We developed an average wireframe reflecting the new senior’s physical characteristics, and a standard body form was developed through surface modeling. To produce a consumer-oriented bra with a body shaping effect and reduced clothing pressure that would not affect physical activities, a three-dimensional pattern was developed applying an optimal reduction rate of 80%. To verify the bra’s adequacy for the body form of new senior women, two market-available bras were selected and fit-compared to the developed product. The developed bra received higher expert appearance evaluation and 3D virtual clothing evaluation scores. This study is significant because by using virtual fitting technology, it provides foundational data to quantify the quality of fashion products.
Population aging is a global phenomenon, and the elderly population has a higher economic capability today than that in the past. Thus, this population is considered to be a growing consumer group that enjoys both consumer and leisure life. In this study, we developed prototype hat patterns for elderly women that can be used for developing close-fitting hats, helmets, masks, and smart headwear. Three-dimensional (3D) head scan data of elderly women were employed herein, and the data were classified into three groups with common head size and head shape. The target group was selected from a high-frequency group among the classified groups, and a standard head form representing the target group was developed using averaging and wire frame generation techniques. Four hat types were considered, design baselines were developed for each type, and prototype patterns were designed for each hat type using a flattening technique. The suitability of the developed prototype hat patterns was subsequently verified. Our results showed that all four prototype patterns had errors less than 5 mm2 (1.40%). The hat patterning method proposed in this study is expected to improve the wearing comfort of high-value-added products designed for the elderly.
The purpose of this study is to develop a quantitative evaluation system that reflects the required performance factors that are important for a tracked vehicle crew jacket. We identified and analyzed the necessary performance factors obtained from a focus group interview and a questionnaire survey. Further, we proposed a new method of calculating weights and developed a quantitative evaluation system. This system featured an equation that calculated the evaluation score out of 100, using the factors’ percentages in the total factor as factor weights. The system’s application was verified by the assessment of subfactors by active-duty soldiers, and by confirmation that the results of the developed factor scores reflected the proposed development direction. The study is significant for its provision of a comprehensive and quantitative evaluation system which has not existed before for protective clothing design, as well as for the verification of the system’s application through the process of protective clothing development. The quantitative evaluation system and its development process described in this study may be referenced and widely deployed due to its use of a Likert scale, which is commonly used as a subjective sensory evaluation tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.