Computational fluid dynamics simulations using the WENO-LF method are applied to high Mach number nonrelativistic astrophysical jets, including the effects of radiative cooling. Our numerical methods have allowed us to simulate astrophysical jets at much higher Mach numbers than have been attained (Mach 20) in the literature. Our simulations of the HH 1-2 astrophysical jets are at Mach 80. Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with the astrophysical images.
This paper is concerned with fifth-order weighted essentially non-oscillatory (WENO) scheme with a new smoothness indicator. As the so-called WENO-JS scheme (Jiang and Shu in J Comput Phys 126:202-228, 1996) provides the third-order accuracy at critical points where the first and third order derivatives do not becomes zero simultaneously, several fifth-order WENO scheme have been developed through modifying the known smoothness indicators of WENO-JS. Recently a smoothness indicator based on L 1 -norm has been proposed by Ha et al. (J Comput Phys 232:68-86, 2013) (denoted by WENO-NS). The aim of this paper is twofold. Firstly, we further improve the smoothness indicator of WENO-NS and secondly, using this measurement, we suggest new nonlinear weights by simplifying WENO-NS weights. The proposed WENO scheme provides the fifth-order accuracy, even at critical points. Some numerical experiments are provided to demonstrate that the present scheme performs better than other WENO schemes of the same order.
The aim of this study is to develop a novel sixth-order weighted essentially non-oscillatory (WENO) finite difference scheme. To design new WENO weights, we present two important measurements: a discontinuity detector (at the cell boundary) and a smoothness indicator. The interpolation method is implemented by using exponential polynomials with tension parameters such that they can be tuned to the characteristics of the given data, yielding better approximation near steep gradients without spurious oscillations, compared to the WENO schemes based on algebraic polynomials at lower computational cost. A detailed analysis is performed to verify that the proposed scheme provides the required convergence order of accuracy. Some numerical experiments are presented and compared with other sixth-order WENO schemes to demonstrate the new algorithm's ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.