Molecular binding in surface-based biosensing is inherently governed by diffusional transport of molecules in solution to surface-immobilized counterparts. Optothermally generated surface microbubbles can quickly accumulate solutes at the bubble–liquid–substrate interface due to high-velocity fluid flows. Despite its potential as a concentrator, however, the incorporation of bubbles into protein-based sensing is limited by high temperatures. Here, we report a biphasic liquid system, capable of generating microbubbles at a low optical power/temperature by formulating PFP as a volatile, water-immiscible component in the aqueous host. We further exploited zwitterionic surface modification to prevent unwanted printing during bubble generation. In a single protein–protein interaction model, surface binding of dispersed proteins to capture proteins was enhanced by 1 order of magnitude within 1 min by bubbles, compared to that from static incubation for 30 min. Our proof-of-concept study exploiting fluid formulation and optothermal add-on paves an effective way toward improving the performances of sensors and spectroscopies.
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/ nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Rotation of micro/nano-objects is important for micro/nanorobotics, three-dimensional imaging, and lab-on-a-chip systems. Optical rotation techniques are especially attractive because of their fuel-free and remote operation. However, current techniques require laser beams with designed intensity profile and polarization or objects with sophisticated shapes or optical birefringence. These requirements make it challenging to use simple optical setups for light-driven rotation of many highly symmetric or isotropic objects, including biological cells. Here, we report a universal approach to the out-of-plane rotation of various objects, including spherically symmetric and isotropic particles, using an arbitrary low-power laser beam. Moreover, the laser beam is positioned away from the objects to reduce optical damage from direct illumination. The rotation mechanism based on opto-thermoelectrical coupling is elucidated by rigorous experiments combined with multiscale simulations. With its general applicability and excellent biocompatibility, our universal light-driven rotation platform is instrumental for various scientific research and engineering applications.
High‐sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity‐improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity‐improving strategies are introduced, which can be developed into “plug‐and‐play” modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion‐limit‐breaking systems for enhancing sensor–analyte contact and subsequent analyte recognition by fluid‐mixing and analyte‐concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.