In the molecular electronics field it is highly desirable to engineer the structure of molecules to achieve specific functions. In particular, diode (or rectification) behaviour in single molecules is an attractive device function. Here we study charge transport through symmetric tetraphenyl and non-symmetric diblock dipyrimidinyldiphenyl molecules covalently bound to two electrodes. The orientation of the diblock is controlled through a selective deprotection strategy, and a method in which the electrode-electrode distance is modulated unambiguously determines the current-voltage characteristics of the single-molecule device. The diblock molecule exhibits pronounced rectification behaviour compared with its homologous symmetric block, with current flowing from the dipyrimidinyl to the diphenyl moieties. This behaviour is interpreted in terms of localization of the wave function of the hole ground state at one end of the diblock under the applied field. At large forward current, the molecular diode becomes unstable and quantum point contacts between the electrodes form.
Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.
A copper nanowire-graphene (CuNW-G) core-shell nanostructure was successfully synthesized using a low-temperature plasma-enhanced chemical vapor deposition process at temperatures as low as 400 °C for the first time. The CuNW-G core-shell nanostructure was systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy measurements. A transparent conducting electrode (TCE) based on the CuNW-G core-shell nanostructure exhibited excellent optical and electrical properties compared to a conventional indium tin oxide TCE. Moreover, it showed remarkable thermal oxidation and chemical stability because of the tight encapsulation of the CuNW with gas-impermeable graphene shells. The potential suitability of CuNW-G TCE was demonstrated by fabricating bulk heterojunction polymer solar cells. We anticipate that the CuNW-G core-shell nanostructure can be used as an alternative to conventional TCE materials for emerging optoelectronic devices such as flexible solar cells, displays, and touch panels.
Charge transport through single diblock dipyrimidinyl diphenyl molecules consisting of a donor and acceptor moiety was measured in the low-bias regime and as a function of bias at different temperatures using the mechanically controllable break-junction technique. Conductance histograms acquired at 10 mV reveal two distinct peaks, separated by a factor of 1.5, representing the two orientations of the single molecule with respect to the applied bias. The current-voltage characteristics exhibit a temperature-independent rectification of up to a factor of 10 in the temperature range between 300 and 50 K with single-molecule currents of 45-70 nA at ±1.5 V. The current-voltage characteristics are discussed using a semiempirical model assuming a variable coupling of the molecular energy levels as well as a nonsymmetric voltage drop across the molecular junction, thus shifting the energy levels accordingly. The excellent agreement of the data with the proposed model suggests that the rectification originates from an asymmetric Coulomb blockade in combination with an electric-field-induced level shifting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.