Validation of the geometric data such as 3D city model is quite crucial for simulation tasks, since the simulation process strongly correlates to the quality of geometric data being meshed. Validation methodology and healing of the 3D city models using different tools are presented. The most common inherited geometrical errors are checked and analyzed. Accordingly, an appropriate healing process to the case study is performed, which illustrates that the required closed solids and closed shells are obtained within the geometrical structures of the 3D city model being processed. Also, in this paper we compare some related open source and commercial software tools for the validation and healing process. It is noticed that they differ from each other in performing the required healing process. Some of them are quite good in healing specific errors, whereas not successful in healing the rest of errors. The goal of the paper is to obtain more understanding of the geometric validation and healing capabilities of various software tools, and the qualities of generated meshes, to lead to more effective and reliable simulations in the field of urban wind flow simulation.
A computational analysis of the hydrodynamics of the Badush dam in Iraq is presented, which is planned to be reconstructed as a repulse dam, to prevent the Mosul city, in case of a failure of the Mosul dam. Computational Fluid Dynamics (CFD) is applied in combination with Geometric Information System (GIS) and Digital Elevation Model (DEM). In the first part of the study, a hydrologic study of a possible Mosul dam failure is performed, predicting the important parameters for a possible flooding of Mosul city. Here, a two-dimensional, depth-averaged shallow water equations are used to formulate the flow. Based on GIS and DEM, the required reservoir size and the water level of the Badush dam are predicted, for its acting as a repulse dam. Subsequently, a computational model of the reconstructed Badush dam is developed, combining the proposed construction with the local geographic topology to achieve a perfect fit. Finally, the water flow through the bottom outlets and stilling basin of the proposed dam is calculated by an unsteady, three-dimensional CFD analysis of the turbulent, free-surface flow. The CFD model is validated by comparing the predictions with measurements obtained on a physical model, where a quite satisfactory agreement is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.