BackgroundDecision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning.MethodsWe combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model.ResultsThe SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment).ConclusionsThis study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.Electronic supplementary materialThe online version of this article (10.1186/s12961-018-0308-y) contains supplementary material, which is available to authorized users.
Background: Health experts including planners and policy-makers face complex decisions in diverse and constantly changing healthcare systems. Visual analytics may play a critical role in supporting analysis of complex healthcare data and decision-making. The purpose of this study was to examine the real-world experience that experts in mental healthcare planning have with visual analytics tools, investigate how well current visualisation techniques meet their needs, and suggest priorities for the future development of visual analytics tools of practical benefit to mental healthcare policy and decision-making. Methods: Health expert experience was assessed by an online exploratory survey consisting of a mix of multiple choice and open-ended questions. Health experts were sampled from an international pool of policy-makers, health agency directors, and researchers with extensive and direct experience of using visual analytics tools for complex mental healthcare systems planning. We invited them to the survey, and the experts' responses were analysed using statistical and text mining approaches. Results: The forty respondents who took part in the study recognised the complexity of healthcare systems data, but had most experience with and preference for relatively simple and familiar visualisations such as bar charts, scatter plots, and geographical maps. Sixty-five percent rated visual analytics as important to their field for evidence-informed decision-making processes. Fifty-five percent indicated that more advanced visual analytics tools were needed for their data analysis, and 67.5% stated their willingness to learn new tools. This was reflected in text mining and qualitative synthesis of open-ended responses. Conclusions: This exploratory research provides readers with the first self-report insight into expert experience with visual analytics in mental healthcare systems research and policy. In spite of the awareness of their importance for complex healthcare planning, the majority of experts use simple, readily available visualisation tools. We conclude that co-creation and co-development strategies will be required to support advanced visual analytics tools and skills, which will become essential in the future of healthcare.
Background This study aimed to assess the long-term effects of size-specific particulate matter (PM) on frailty transitions in middle-aged and older Chinese adults. Methods We included 13 910 participants ≥45 y of age from the China Health and Retirement Longitudinal Study (CHARLS) for 2015 and 2018 who were classified into three categories in 2015 according to their frailty states: robust, prefrail and frail. Air quality data were obtained from the National Urban Air Quality Real-time Publishing Platform. A two-level logistic regression model was used to examine the association between concentrations of PM and frailty transitions. Results At baseline, the total number of robust, prefrail and frail participants were 7516 (54.0%), 4324 (31.1%) and 2070 (14.9%), respectively. Significant associations were found between PM concentrations and frailty transitions. For each 10 μg/m3 increase in the 3-y averaged 2.5-μm PM (PM2.5) concentrations, the risk of worsening in frailty increased in robust (odds ratio [OR] 1.06 [95% confidence interval {CI} 1.01 to 1.12]) and prefrail (OR 1.07 [95% CI 1.01 to 1.13]) participants, while the probability of improvement in frailty in prefrail (OR 0.91 [95% CI 0.84 to 0.98]) participants decreased. In addition, the associations of PM10 and coarse fraction of PM with frailty transitions showed similar patterns. Conclusions Long-term exposure to PM was associated with higher risks of worsening and lower risks of improvement in frailty among middle-aged and older adults in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.