: Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.
This study was conducted to evaluate light intensity and uniformity of two SMD (surface-mount device) type LEDs for protected crop production. A lowpower (0.1 W) and a high-power (1 W) LEDs were selected and the intensity and uniformity was evaluated at different vertical (height) and horizontal (distance) intervals. When the horizontal interval of the LED bar was fixed, the light intensity increased and the uniformity decreased as the height decreased. At the 30~40 cm heights, 20~30% of the area showed 200 ±20 μmolm -2 s -1 . As the horizontal distance of the LED bars increased, while the uniformity increased as well, the light intensity decreased. At the distances of 6~10 cm, 17~23% of the area showed 200 ±20 μmolm -2 s -1 . When the LED bars were added to the sides, the light intensity and uniformity were generally improved. Results showed that the light intensity and uniformity depended on the height and interval of the LED bulbs; therefore, optimum arrangement for the crops interested should be determined through experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.