In the past few decades, the Loess Plateau has undergone large-scale underlying surface changes. A large number of soil and water conservation measures have been constructed, which have affected the runoff and sediment status in the region. How runoff and sediment status respond to underlying surface changes is the key to quantitatively evaluate the effect of water and sediment reduction by soil and water conservation measures in flood events. We selected check dams and terraced fields, which account for a large proportion of soil and water conservation measures as assessment objects and constructed a runoff-sediment model combining traditional physical mechanisms and deep learning to simulate and analyze flood events in a typical basin of the Loess Plateau. The results show that the simulation effect of model is good. The relative error of runoff is within 15%, average Nash–Sutcliffe efficiency coefficient is 0.86, and the relative error of soil loss is within 30%. Check dam system in the Chenggou River Basin can intercept 55.61% of the runoff and 47% of the soil loss in the basin on average, and terracing can reduce the runoff by 10.54% and the soil loss by 33.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.