A refractive index (RI) sensor based on a novel fiber structure which consists of a singlemode-multimodesinglemode (SMS) fiber structure followed by a fiber Bragg grating (FBG) was demonstrated. The multimode fiber (MMF) in the SMS structure excites cladding modes within output singlemode fiber (SMF) and re-couple the reflected cladding Bragg wavelength to the input SMF core. By measuring the relative Bragg wavelength shift between core and cladding Bragg wavelengths, the RI can be determined. Experimentally we have achieved a maximum sensitivity of 7.33 nm/RIU (RI unit) at RI range from 1.324to 1.439.
A singlemode-multimode-singlemode (SMS) fiber structure consists of a short section of multimode fiber fusionspliced between two SMS fibers. The mechanism underpinning the operation of an SMS fiber structure is multimode interference and associated self-imaging. SMS structures can be used in a variety of optical fiber systems but are most commonly used as sensors for a variety of parameters, ranging from macro-world measurands such as temperature, strain, vibration, flow rate, RI and humidity to the micro-world with measurands such as proteins, pathogens, DNA, and specific molecules. While traditional SMS structures employ a short section of standard multimode fiber, a large number of structures have been investigated and demonstrated over the last decade involving the replacement of the multimode fiber section with alternatives such as a hollow core fiber or a tapered fiber. The objective of replacing the multimode fiber has most often been to allow sensing of different measurands or to improve sensitivity. In this paper, several different categories of SMS fiber structures, including traditional SMS, modified SMS and tapered SMS fiber structures are discussed with some theoretical underpinning and reviews of a wide variety of sensing examples and recent advances. The paper then summarizes and compares the performances of a variety of sensors which have been published under a number of headings. The paper concludes by considering the challenges faced by SMS based sensing schemes in terms of their deployment in real world applications and discusses possible future developments of SMS fiber sensors.
The depressed core fiber (DCF), consisting of a low-index solid core, a high-index cladding and air surrounding, is in effect a bridge between the conventional step-index fiber and the tube-type hollow-core fiber from the point of view of the index profile. In this paper the dispersion diagram of a DCF is obtained by solving the full-vector eigenvalue equations and analyzed using the theory of anti-resonant and the inhibited coupling mechanisms. While light propagation in tube-type hollow-core fibers is commonly described by the symmetric planar waveguide model, here we propose an asymmetric planar waveguide for the DCFs in an anti-resonant reflecting optical waveguide (ARROW) model. It is found that the antiresonant core modes in the DCFs have real effective indices, compared to the anti-resonant core modes with complex effective indices in the tube-type hollow-core fibers. The antiresonant core modes in the DCFs exhibit similar qualitative and quantitative behavior as the core modes in the conventional step-index fibers. The full-vector analytical results for the simple-structure DCFs can contribute to a better understanding of the anti-resonant and inhibited coupling guidance mechanisms in other complex inversed index fibers.
The local surface plasmon resonance properties in systems consisting of silver nanosphere clusters are studied by Green’s function. The extinction, absorption, and scattering efficiencies band of two, three, and more silver nanospheres clusters are discussed in detail. The clusters show new types of the local surface plasmon resonances compared with single silver nanosphere. Our results suggest that the resonances depend strongly on individual particles’ characteristics such as their shapes, gap distances, directions and polarizations of incident light waves, and the number of clusters. The spectrum shows that equilateral triangle nanospheres has a good absorption peak, while the better red-shifted with three aligned nanospheres. In addition, the distributions of electric field intensity for three and four touched silver nanospheres are also investigated. The study is useful to broaden the application scope of Raman spectroscopy and nanooptics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.