Objective Intervertebral disc degeneration (IDD) is the main cause of back pain, and its treatment is a serious socio‐economic burden. The safety and treatment of fecal microbiota transplantation (FMT) has been established. However, the relationship between FMT and IDD still unclear. We aimed to explore whether FMT plays a role in IDD to provide a reference for the treatment of IDD. Methods An experimental model of IDD was established using 2‐month‐old male Sprague–Dawley rats. FMT was performed by intragastric gavage of IDD rats with a fecal bacterial solution. Rat serum, feces, and vertebral disc tissue were collected after surgery for 2 months. The levels of TNF‐α, IL‐1β, IL‐6, matrix metalloproteinase (MMP)‐3, MMP‐13, Collagen II, and aggrecan in the serum or vertebral disc tissue were measured by an enzyme‐linked immunosorbent assay, immunohistochemistry, quantitative real‐time polymerase chain reaction, or western blotting. We also examined the pathology of the vertebral disc tissue using hematoxylin and eosin (HE) and safranin O‐fast green staining. Finally, we examined the gut microbiota in rat feces using 16 S rRNA gene sequencing. Results We found that the expression of TNF‐α, IL‐1β, IL‐6, MMP‐3, MMP‐13, NLRP3 and Caspase‐1 increased in the IDD group rats. In contrast, Collagen II and aggrecan levels were downregulated. Additionally, vertebral disc tissue was severely damaged in the IDD group, with disordered cell arrangement and uneven safranin coloration. FMT reversed the effects of IDD modeling on these factors and alleviated cartilage tissue damage. In addition, FMT increased the gut microbiota diversity and microbial abundance in rats treated with IDD. Conclusion Our findings suggest that FMT has a positive effect in maintaining cellular stability in the vertebral disc and alleviating histopathological damage. It affects the diversity and abundance of gut microbiota in rats with IDD. Therefore, FMT may serve as a promising target for amelioration of IDD.
Background: Intervertebral disc degeneration (IDD) is a primary health problem worldwide that involves oxidative stress, ferroptosis, and lipid metabolism. However, the underlying mechanism remains unclear. We investigated whether the transcription factor BTB and CNC homology 1 (BACH1) affected IDD progression by regulating HMOX1/GPX4-mediated ferroptosis and lipid metabolism in nucleus pulposus cells (NPCs).Methods: A rat IDD model was created to detect BACH1 expression in intervertebral disc tissues. Next, rat NPCs were isolated and treated with tert-butyl hydroperoxide (TBHP). BACH1, HMOX1, and GPX4 were knocked down, and oxidative stress and ferroptosis-related marker levels were examined. The binding of BACH1 to HMOX1 and of BACH1 to GPX4 was verified using chromatin immunoprecipitation (ChIP).Finally, untargeted lipid metabolism analysis was performed.Results: An IDD model was successfully created, and BACH1 activity was found to be enhanced in the rat IDD tissues. BACH1 inhibited TBHP-induced oxidative stress and oxidative stress-induced ferroptosis in NPCs. Simultaneously, ChIP verified that BACH1 protein bound to HMOX1 and targeted the HMOX1 transcription inhibition to affect oxidative stress in NPCs. ChIP also verified that BACH1 bound to GPX4 and targeted the GPX4 inhibition to affect ferroptosis in NPCs. Finally, BACH1 inhibition in vivo improved IDD and affected lipid metabolism. Conclusions:The transcription factor BACH1 promoted IDD by regulating HMOX1/ GPX4 to mediate oxidative stress, ferroptosis, and lipid metabolism in NPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.