Prognostics is the area of research that is concerned with predicting the remaining useful life of machines and machine parts. The remaining useful life is the time during which a machine or part can be used, before it must be replaced or repaired. To create accurate predictions, predictive techniques must take external data into account on the operating conditions of the part and events that occurred during its lifetime. However, such data is often not available. Similarity-based techniques can help in such cases. They are based on the hypothesis that if a curve developed similarly to other curves up to a point, it will probably continue to do so. This paper presents a novel technique for similaritybased remaining useful life prediction. In particular, it combines Bayesian updating with priors that are based on similarity estimation. The paper shows that this technique outperforms other techniques on long-term predictions by a large margin, although other techniques still perform better on short-term predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.