Road surface defects are crucial problems for safe and smooth traffic flow. Due to climate changes, low quality of construction material, large flow of traffic, and heavy vehicles, road surface anomalies are increasing rapidly. Detection and repairing of these defects are necessary for the safety of drivers, passengers, and vehicles from mechanical faults. In this modern era, autonomous vehicles are an active research area that controls itself with the help of in-vehicle sensors without human commands, especially after the emergence of deep learning (DNN) techniques. A combination of sensors and DNN techniques can be useful for unmanned vehicles for the perception of their surroundings for the detection of tracks and obstacles for smooth traveling based on the deployment of artificial intelligence in vehicles. One of the biggest challenges for autonomous vehicles is to avoid the critical road defects that may lead to dangerous situations. To solve the accident issues and share emergency information, the Intelligent Transportation System (ITS) introduced the concept of vehicular network termed as vehicular ad hoc network (VANET) for achieving security and safety in a traffic flow. A novel mechanism is proposed for the automatic detection of road anomalies by autonomous vehicles and providing road information to upcoming vehicles based on Edge AI and VANET. Road images captured via camera and deployment of the trained model for road anomaly detection in a vehicle could help to reduce the accident rate and risk of hazards on poor road conditions. The techniques Residual Convolutional Neural Network (ResNet-18) and Visual Geometry Group (VGG-11) are applied for the automatic detection and classification of the road with anomalies such as a pothole, bump, crack, and plain roads without anomalies using the dataset from different online sources. The results show that the applied models performed well than other techniques used for road anomalies identification.
In the modern era business intelligence (BI) has a pivotal role in articulating a strategy and taking correct measures based on data. Business intelligence plays a pivotal role in an inevitable decision support system that enables the enterprise to perform analysis on data and throughout the process of business. Machine learning predicts the forecasting of future demands of the enterprises. Demand forecasting is one of the main decision-making tasks of enterprise. For demand forecasting first raw sales data is collected from the market, then according to data, the future sale/product demands are forecasted. This prediction is based on collected data that compiles through different sources. The machine learning engine executes data from different modules and determines the weekly, monthly, and quarterly demands of goods/commodities. In demand forecasting, its perfect accuracy is non-compromising, the more accurate system model is more efficient. Furthermore, we test the efficiency by comparing the predicted data with actual data and determine the percentage error. Simulation results show that after applying the purposed solution on real-time organization data, we get up to 92.38 % accuracies for the store in terms of intelligent demand forecasting. INDEX TERMS Business intelligence, demand forecasting, prediction, machine learning, AWS sage maker, sale forecasting.
Background: To provide ease to diagnose that serious sickness multi-technique model is proposed. Data Analytics and Machine intelligence are involved in the detection of various diseases for human health care. The computer is used as a tool by experts in the medical field, and the computer-based mechanism is used to diagnose different diseases in patients with high Precision. Due to revolutionary measures employed in Artificial Neural Networks (ANNs) within the research domain in the medical area, which appear to be in the data-driven applications usually described in the domain of health care. Cardio sickness according to name is a type of an ailment that is directly connected to the human heart and blood circulation setup, so it should be diagnosed on time because the delay of diagnosing of that disease may lead the sufferer to death. The research is mainly aimed to design a system that will be able to detect cardiovascular sickness in the sufferer using machine learning approaches. Objective: The main objective of the research is to gather information of the six parameters that is age, chest pain, electrocardiogram, systolic blood pressure, fasting blood sugar and serum cholesterol are used by Mamdani fuzzy expert to detect cardiovascular sickness. To propose a type of device which will be successfully used in overcoming the cardiovascular diseases. This proposed model Diagnosis Cardiovascular Disease using Mamdani Fuzzy Inference System (DCD-MFIS) shows 87.05 percent Precision. To delineate an effective Neural Network Model to predict with greater precision, whether a person is suffering from cardiovascular disease or not. As the ANN is composed of various algorithms, some will be handed down for the training of the network. The main target of the research is to make the use of three techniques, which include fuzzy logic, neural network, and deep machine learning. The research will employ the three techniques along with the previous comparisons, and given that, the results will be compared respectively. Methods: Artificial neural network and deep machine learning techniques are applied to detect cardiovascular sickness. Both techniques are applied using 13 parameters age, gender, chest pain, systolic blood pressure, serum cholesterol, fasting blood sugar, electrocardiogram, exercise including angina, heart rate, old peak, number of vessels, affected person and slope. In this research, the ANN-based research is one of the algorithms collections, which is the detection of cardiovascular diseases, is proposed. ANN constitutes of many algorithms, some of the algorithms are employed in the paper for the training of the network used, to achieve the prediction ratio and in contrast of the comparison of the mutual results shown. Results: To make better analysis and consideration of the three frameworks, which include fuzzy logic, ANN, Deep Extreme Machine Learning. The proposed automated model Diagnosis Cardiovascular Disease includes Fuzzy logic using Mamdani Fuzzy Inference System (DCD-MFIS), Artificial Neural Network (DCD–ANN) and Deep Extreme Machine Learning (DCD–DEML) approach using back propagation system. These frameworks help in attaining greater precision and accuracy. Proposed DCD Deep Extreme Machine Learning attains more accuracy with previously proposed solutions that are 92.45%. Conclusion: From the previous comparisons, the propose automated Diagnosis of Cardiovascular Disease using Fuzzy logic, Artificial Neural Network, and deep extreme machine learning approaches. The automated systems DCDMFIS, DCD–ANN and DCD–DEML, the framework proposed as effective and efficient with 87.05%, 89.4% and 92.45 % success ratios respectively. To verify the performance which lies in the ANNs and computational analysis, many indicators determining the precise performance were calculated. The training of the neural networks is made true using the 10 to 20 neurons layers which denote the hidden layer. DEML reveals and indicates a hidden layer containing 10 neurons, which shows the best result. In the last, we can conclude that after making a consideration among the three techniques fuzzy logic, Artificial Neural Network and Proposed DCD Deep Extreme Machine, the Proposed DCD Deep Extreme Machine Learning based solution give more accuracy with previously proposed solutions that are 92.45%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.