Copper II-Albumin complex (Cu-II-Albumin complex) is a novel therapeutic target that has been used as anti-inflammatory, antioxidant, and anti-gastrointestinal toxicity. In this study, 40 rats were divided into four groups, normal control (NC), aflatoxicosed group (AF) that received Aflatoxin B1 (AFB1) (50 μg/kg of the AFB1 daily for 3 weeks), AFB1-Cu-II-Albumin prophylactic group (AF/CUC-P) that subjected to intermittent treatment between AFB1 and Cu-II-Albumin complex (0.05 g/kg Cu-II-Albumin complex) day after day for 3 weeks and AFB1-Cu-II-albumin treatment group (AF/CUC-T) that received AFB1 for 3 weeks and Cu-II-albumin complex for another 3 weeks.The hepatocellular protective effect of the Cu-II-albumin complex was assessed by evaluating the liver functions markers, hepatic histopathology, reactive oxygen species (ROS) levels (Nitric Oxide (NO) and malondialdehyde (MDA)), apoptotic genes (caspase-3 and tumor necrosis factor receptor 1 [TNF-R1]) expressions, and serological and molecular biomarkers of hepatocellular carcinoma (histamine and Glucose-Regulated Protein 78 [GRP78], respectively). Our finding showed that Cu-II-Albumin Complex administration had restored liver function, oxidative stress levels, enhanced liver tissue recovery, and reduced the expression of the apoptotic genes of the aflatoxicosed rats. In conclusion, the current study results demonstrated the protective effect of Cu-II-albumin complex against AFB1-induced hepatocellular toxicity.
Practical applicationsThe protective effect of Cu-II-Albumin Complex against AFB1-induced hepatocellular toxicity by assessing oxidative stress, liver biomarkers, inflammation, and histological changes of liver tissues. The protective mechanism of the Cu-II-albumin complex was also investigated. More clinical studies are required to evaluate the potential of using the Cu-II-albumin complex as a therapeutic agent against hepatocellular toxicity.
Aim: We aimed to investigate the potential inhibitory effects of diterpenes on SARS-CoV-2 main protease (Mpro). Materials & methods: We performed a virtual screening of diterpenoids against Mpro using molecular docking, molecular dynamics simulation and absorption, distribution, metabolism and excretion) analysis. Results: Some tested compounds followed Lipinski’s rule and showed drug-like properties. Some diterpenoids possessed remarkable binding affinities with SARS-CoV-2 Mpro and drug-like pharmacokinetic properties. Three derivatives exhibited structural deviations lower than 1 Å. Conclusion: The findings of the study suggest that some of the diterpenes could be candidates as potential inhibitors for Mpro of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.