Optimised task allocation is essential for efficient and effective edge computing; however, task allocation differs in edge systems compared to the powerful centralised cloud data centres, given the limited resource capacities in edge and the strict QoS requirements of many innovative Internet of Things (IoT) applications. This paper aims to optimise heterogeneous task allocation specifically for edge micro-cluster platforms. We extend our previous work on optimising task allocation for micro-clusters by presenting a linear-based model and propose a metaheuristic Particle Swarm Optimisation (PSO) technique to minimise the makespan time and the allocation overhead time of heterogeneous workloads in batch execution. We present a comparative performance evaluation of metaheuristic PSO, mixed-integer programming (MIP) and randomised allocation based on the computation overhead time and the quality of the solutions. Our results show a crossover implying that mixedinteger programming is efficient for small-scale clusters, whereas PSO scales better and provides near-optimal solutions for largerscale micro-clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.