Wound healing is a physiological reaction to tissue injuries which plays a crucial role in replacing the destroyed tissues. Probiotics produce valuable compounds that possess antibacterial and anti-inflammatory activities, immunomodulatory effects, and angiogenesis traits leading to the promotion of wound healing. Chitosan nanostructures have versatile properties making them quickly produced into gels, scaffolds, nanoparticles, beads, and sponge structures that can be incorporated into wound healing processes. In the current study, three formulations from nanogel consisting of probiotic supernatant (Lactobacillus reuteri, Lactobacillus fermentum, and Bacillus subtilis sp. natto)-loaded chitosan nanogels were prepared from the culture of corresponding cultures. The chitosan nanogels were previously characterized by Zetasizer, FTIR, and TEM. The prepared formulations’ effectiveness and dressing activity were assessed by evaluating wound closure and histological trials in Sprague-Dawley rats. The results indicated that all probiotic lysate formulations have advantages over the wound healing process. However, Bacillus subtilis natto has a better wound healing quality, which is well known in pathology examination. The favorable effects of probiotic lysate nanogels, including the reasonable wound closing rate, good wound appearance, and satisfactory histological observation via in vivo examination, suggest it as a promising nominee for wound healing purposes.
Background Post-menopausal osteoporosis is a concern of health organizations, and current treatments do not seem enough. Postbiotics as bioactive compounds produced by probiotics may be an attractive alternative for bone health. In this study, we prepared, formulated, and compared the effects of cell lysate and supernatant of five native probiotic strains (Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei, Bifidobacterium longum, and Bacillus coagulans) in ovariectomized (OVX) rats. Methods The probiotic strains were isolated, and their cell-free supernatants and biomasses as postbiotics were extracted and formulated using standard microbial processes. The Sprague-Dawley rats were fed by 1 × 109 CFU/ml/day postbiotic preparations for 4 weeks immediately after ovariectomy. Dual-energy X-ray absorptiometry (DEXA) scans were accomplished to evaluate femur, spine, and tibia BMD. The serum biochemical markers [calcium, phosphorus, and alkaline phosphatase] were assessed. Results Postbiotics could considerably improve the global and femur area in OVX rats. In the case of global bone mineral density (BMD), Lactobacillus casei lysate and supernatant, Bacillus coagulans lysate and supernatant, lysate of Bifidobacterium longum and Lactobacillus acidophilus, and Lactobacillus reuteri supernatant significantly increased BMD. We found Bacillus coagulans supernatant meaningfully enriched tibia BMD. Conclusion Postbiotic could ameliorate bone loss resulting from estrogen deficiency. Also, the effects of postbiotics on different bone sites are strain-dependent. More clinical studies need to explore the optimal administrative dose and duration of the specific postbiotics in protecting bone loss.
The wound is a break in the integrity of the skin produced by injury, illness, or operation. Wound healing is an essential dynamic biological/physiological process that occurs in response to tissue damage. The huge health, economic, and social effects of wounds on patients and societies necessitate the research to find novel potential therapeutic agents in order to promote wound healing. Postbiotics, the newest member of the biotics family, are valuable functional bioactive substances produced by probiotics through their metabolic activity, which have several beneficial properties, including immunomodulatory, anti-inflammatory, antimicrobial, and angiogenesis characteristics, resulting in acceleration of wound healing. In the current study, three topical cold cream formulations containing postbiotics obtained from Lactobacillus fermentum, Lactobacillus reuteri, or Bacillus subtilis sp. natto probiotic strains were prepared. The effectiveness and wound healing activity of the developed postbiotics cold cream formulations were investigated compared to cold cream without postbiotics and no treatment via wound closure investigation, hydroxyproline content assay, and histological assessment in 25 Sprague Dawley rats divided into five groups. Interestingly, analysis of the results revealed that all three formulations containing postbiotics significantly accelerated the wound healing process. However, in general, the Bacillus subtilis natto cold cream manifested a better wound healing property. The pleasing wound healing characteristics of the topical postbiotics cold creams through the in vivo experiment suggest that formulations containing postbiotics can be considered as a promising nominee for wound healing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.