Coupling capillary electrophoresis (CE) to mass spectrometry (MS) is a powerful strategy to leverage a high separation efficiency with structural identification. Traditional CE-MS interfacing relies upon voltage to drive this process. Additionally, sheathless interfacing requires that the electrophoresis generates a sufficient volumetric flow to sustain the ionization process. Vibrating sharp-edge spray ionization (VSSI) is a new method to interface capillary electrophoresis to mass analyzers. In contrast to traditional interfacing, VSSI is voltage-free, making it straightforward for CE and MS. New nanoflow sheath CE-VSSI-MS is introduced in this work to reduce the reliance on the separation flow rate to facilitate the transfer of analyte to the MS. The nanoflow sheath VSSI spray ionization functions from 400 to 900 nL/min. Using the new nanoflow sheath reported here, volumetric flow rate through the separation capillary is less critical, allowing the use of a small (i.e., 20 to 25 μm) inner diameter separation capillary and enabling the use of higher separation voltages and faster analysis. Moreover, the use of a nanoflow sheath enables greater flexibility in the separation conditions. The nanoflow sheath is operated using aqueous solutions in the background electrolyte and in the sheath, demonstrating the separation can be performed under normal and reversed polarity in the presence or absence of electroosmotic flow. This includes the use of a wider pH range as well. The versatility of nanoflow sheath CE-VSSI-MS is demonstrated by separating cationic, anionic, and zwitterionic molecules under a variety of separation conditions. The detection sensitivity observed with nanoflow sheath CE-VSSI-MS is comparable to that obtained with sheathless CE-VSSI-MS as well as CE-MS separations with electrospray ionization interfacing. A bare fused silica capillary is used to separate cationic β-blockers with a near-neutral background electrolyte at concentrations ranging from 1.0 nM to 1.0 μM. Under acidic conditions, 13 amino acids are separated with normal polarity at a concentration ranging from 0.25 to 5 μM. Finally, separations of anionic compounds are demonstrated using reversed polarity under conditions of suppressed electroosmotic flow through the use of a semipermanent surface coating. With a near-neutral separation electrolyte, anionic nonsteroidal anti-inflammatory drugs are detected over a concentration range of 0.1 to 5.0 μM.
A laboratory activity was developed to teach freezing point depression and colligative properties to introductory-level chemistry students. The laboratory uses food-grade reagents and is delivered in two units that can be taught in a single 2 hour session or two separate sessions. The total cost of the consumables is 1 USD. In the first part of this two-part activity, students perform measurements on the properties of five salt solutions to better know and understand freezing point depression. In the second part of the activity, students apply their knowledge and understanding of freezing point depression to make ice cream. The ice-cream-making experiment is delivered as a group activity to encourage reflection. Centering this experiment on ice cream allows students to connect properties described in chemistry to everyday life. The solutions used in the experiment are reusable and nonhazardous. The experiment can be implemented in a classroom, in a teaching laboratory, or at home.
Cape York, in Northern Queensland, Australia, is a remote area with a limited supply of energy, making it very hard for the locals to have an easier life. Locals use diesel as a fuel for transportation which is economically harmful to the environment due to the carbon emissions. The research team found a solution for these problems and decided to design a biogas plant, which will be environmentally friendly, cost-effective, and will produce job opportunities for the locals. The plant aims to produce biogas from the raw manure of the cattle from the farms in Cairns, a nearby neighborhood. The long-term plan of the plant is to be sustainable and profitable. The business plan predicts the break-even point of the business as 4 months and the payback period as less than a year.
The fish market in Wuhan, China was the epicenter of Covid-19 pandemic, brought about by the SARS-CoV-2 virus, resulting in significant economic and social worldwide disruption. Although numerous drugs have been indicated for treating the viral infection and/or its symptoms, the U.S. FDA to date has granted approvals for only four therapeutic agents, namely the smallmolecules Remdesivir, Baricitinib and two monoclonal antibody combinations amlanivimab/etesevimab and casirivimab/imdevimab]. This review deals with the chemical and pharmacological aspects of these approved therapeutic agents as well as the properties of their reported marketed formulations and biological matrices. Furthermore, it presents a comparison between the cited analytical methodologies for each drug separately. A comprehensive, detailed, mini-overview of Coronavirus authorized therapeutics is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.