We propose a stress tensor for the Kerr black hole written in the Boyer-Lindquist coordinate. To achieve this, we use the dictionary of the Flat/CCFT correspondence and take the flat-space limit from the quasi-local stress tensor of the four-dimensional Kerr-AdS black hole. The proposed stress tensor yields the correct values for the mass and angular momentum of the Kerr black hole at spatial infinity. We also calculate some components of the energy momentum tensor of the three dimensional CCFT and show that they are consistent with the holographic calculation of the Kerr black hole. The calculation we present in this paper is another confirmation for the Flat/CCFT proposal.
We present a tachyonic field inflationary model in teleparallel framework. We show that tachyonic coupled with the f (T ) gravity model can describe the inflation era. For this purpose, dynamical behavior of tachnoyic field in different potentials is studied, it is shown that tachyonic field with these potentials can be an effective candidate for inflation. Then, we discuss slow-roll conditions and show that by the appropriate choice of the parameters, the inflation era can be explained via this model. Finally, we argue that our model satisfies the result of BICEP2, Keck Array and Plank for the upper limit of r < .012 arXiv:1812.06649v2 [gr-qc]
Even though many scalar field models of dark energy have been considered in the literature, there is another interesting class of dark energy models involving a fluid known as a Chaplygin gas. In addition to describing the dark energy, both scalar-tensor model and the Chaplygin gas model are suitable candidates for explaining the spherical cosmological collapse. One of the most well-known scalar field models is the quintessence model, which was first introduced to explain an accelerating expanding universe. Using a special form of the quintessence model that is equivalent to Chaplygin gas, we describe evolution of a spherical collapse. We study the cosmological properties of the quintessence field with a special potential. In addition to the quintessence model, that can be converted into a Chaplygin gas model in a particular case, we claim that the fixed-potential tachyonic model is equivalent to the Chaplygin gas model. In this work, we obtain the spherical collapse parameters: the virialized over density parameters, radius, the energy density at the turnaround moment, etc. We compare the results of the proposed model with the standard model of cosmology and the Einstein-de Sitter model. We show that the formation of the large-scale structures within the framework of a Chaplygin gas model happens earlier than predicted in the standard model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.