Total ankle replacement (TAR) and subtalar joint (STJ) fusion, are popular treatments for ankle osteoarthritis (OA). Short endurance limits the former, and movement disability comes with the latter. It is hypothesized here that fusion of the STJ can improve the longevity of the TAR prosthesis. In this study, a fresh human cadaver's ankle joint underwent TAR surgery, and strain patterns in the vicinity of prosthesis were recorded after the application of axial compressive load on tibia, resembling stance phase of the gait. Then, STJ of the same sample fused (FTAR), and a similar test procedure was pursued. The obtained strains in the FTAR were smaller than those of the TAR (p < .01). Finite element models of the tested samples were also made, and validated by experimental strains. The validated FE models were then employed to find stress distribution on the tibial plateau and prosthesis compartments. FTAR demonstrated more regular stress profiles in bone‐prosthesis interface. Also, maximum von Mises stress in the talar component of the FTAR is approximately half of that in the TAR (8 and 15 MPa, respectively). Based on the results of this study, having a more symmetric load distribution on the prosthesis after STJ fusion, longevity of the TAR may likely increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.