Strong and high purity O− negative ion emission has been observed from a synthesized crystal 12CaO⋅7Al2O3 surface. A μA/cm2-level O− emission from this material has been achieved at the surface temperature of 800 °C and the extraction field over 1000 V/cm, which is about three orders of magnitude higher than the current density emitted from the Y2O3-stabilized ZrO2 electrolyte surface. The strong emissivity of this material, as well as easy and economical fabrication, may provide a useful tool to generate the O− negative ion, which is expected to be one of the most important radicals for chemical syntheses and material modifications.
A novel approach to the direct synthesis of phenol from benzene was obtained with high benzene conversion (30%) and phenol selectivity (approximately 90%) by using a microporous material [Ca24Al28O64]4+.4O-(C12A7-O-) as catalyst with oxygen and water; active O- and OH- anions are proposed to play important roles in the formation of phenol by hydroxylating the aromatic ring of benzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.