Water-related energy is an inexhaustible and renewable energy resource in our environment, which has huge amount of energy and is not largely dictated by daytime and sunlight. The transparent characteristic plays a key role in practical applications for some devices designed for harvesting water-related energy. In this paper, a highly transparent triboelectric nanogenerator (T-TENG) was designed to harvest the electrostatic energy from flowing water. The instantaneous output power density of the T-TENG is 11.56 mW/m2. Moreover, with the PTFE film acting as an antireflection coating, the maximum transmittance of the fabricated T-TENG is 87.4%, which is larger than that of individual glass substrate. The T-TENG can be integrated with silicon-based solar cell, building glass and car glass, which demonstrates its potential applications for harvesting waste water energy in our living environment and on smart home system and smart car system.
A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self-powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm, an acceptable detection limit of 10 μm, as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors.
In-doped ZnO nanowires were successfully fabricated by thermal evaporation of a powder mixture of
Zn, In2O3, and graphite. Field emission of individual In-doped and pure ZnO nanowire was observed in situ
by a transmission electron microscopy. The results show that In-doped ZnO nanowires showed an enhanced
field emission properties. First-principle density functional calculations were performed to calculate the
electronic structure of the In-doped and pure ZnO in order to explain the observed field emission properties.
A two-band field emission mechanics was proposed to explain the enhanced field emission from n-type
doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.