Reliable estimates of poplar plantations area are not available at the French national scale due to the unsuitability and low update rate of existing forest databases for this short-rotation species. While supervised classification methods have been shown to be highly accurate in mapping forest cover from remotely sensed images, their performance depends to a great extent on the labelled samples used to build the models. In addition to their high acquisition cost, such samples are often scarce and not fully representative of the variability in class distributions. Consequently, when classification models are applied to large areas with high intra-class variance, they generally yield poor accuracies. In this paper, we propose the use of active learning (AL) to efficiently adapt a classifier trained on a source image to spatially distinct target images with minimal labelling effort and without sacrificing classification performance. The adaptation consists in actively adding to the initial local model, new relevant training samples from other areas, in a cascade that iteratively improves the generalisation capabilities of the classifier, leading to a global model tailored to different areas. This active selection relies on uncertainty sampling to directly focus on the most informative pixels for which the algorithm is the least certain of their class labels. Experiments conducted on Sentinel-2 time series showed that when the same number of training samples was used, active learning outperformed passive learning (random sampling) by up to 5% of overall accuracy and up to 12% of class F-score. In addition, and depending on the class considered, the random sampling required up to 50% more samples to achieve the same performance of an active learning-based model. Moreover, the results demonstrate the suitability of the derived global model to accurately map poplar plantations among other tree species with overall accuracy values up to 14% higher than those obtained with local models. The proposed approach paves the way for national-scale mapping in an operational context.
Poplar (Populus spp.) is a fast-growing tree planted to meet the growing global demand for wood products. In France, the country with the largest area planted with poplar in Europe, accurate and up-to-date maps of its spatial distribution are not available at the national scale. This makes it difficult to estimate the extent and location of the poplar resource and calls for the development of a robust and timely stable approach for mapping large areas in order to ensure efficient monitoring. In this study, we investigate the potential of the Sentinel-2 time series to map the diversity of poplar plantations at the French countrywide scale. By comparing multiple configurations of spectral features based on spectral bands and indices over two years (2017 and 2018), we identify the optimal spectral regions with their respective time periods to distinguish poplar plantations from other deciduous species. We also define a novel poplar detection index (PI) with four variants that combine the best discriminative spectral bands. The results highlight the relevance of SWIR followed by red edge regions, mainly in the growing season, to accurately detect poplar plantations, reflecting the sensitivity of poplar trees to water content throughout their phenological cycle. The best performances with stable results were obtained with the PI2 poplar index combining the B5, B11, and B12 spectral bands. The PI2 index was validated over two years with an average producer’s accuracy of 92% in 2017 and 95% in 2018. This new index was used to produce the national map of poplar plantations in 2018. This study provides an operational approach for monitoring the poplar resource over large areas for forest managers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.