In the current decade, advances in health care are attracting widespread interest due to their contributions to people longer surviving and fitter lives. Alzheimer's disease (AD) is the commonest neurodegenerative and dementing disease. The monetary value of caring for Alzheimer's disease patients is involved to rise dramatically. The necessity of having a computer-aided system for early and accurate AD classification becomes crucial. Deep-learning algorithms have notable advantages rather than machine learning methods. Many recent research studies that have used brain MRI scans and convolutional neural networks (CNN) achieved promising results for the diagnosis of Alzheimer's disease. Accordingly, this study proposes a CNN based end-to-end framework for AD-classification. The proposed framework achieved 99.6%, 99.8%, and 97.8% classification accuracies on Alzheimer's disease Neuroimaging Initiative (ADNI) dataset for the binary classification of AD and Cognitively Normal (CN). In multi-classification experiments, the proposed framework achieved 97.5% classification accuracy on the ADNI dataset. Keywords AD-classification Á Convolutional neural network (CNN) Á Magnetic resonance imaging (MRI) Á Adaptive momentum estimation (Adam) Á Glorot uniform weight initializer
Wireless sensor networks (WSN) have been investigated as a powerful distributed sensing application to enhance the efficiency of embedded systems and wireless networking capabilities. Although WSN has offered unique opportunities to set the foundation for using ubiquitous and pervasive computing, it suffered from several issues and challenges such as frequently changing network topology and congestion issue which affect not only network bandwidth usage but also performance. The main objective of this study is to introduce a congestion-aware clustering and routing (CCR) protocol to alleviate the congestion issue over the network. The CCR protocol is proposed to decrease end-to-end delay time and prolong the network lifetime through choosing the suitable primary cluster head (PCH) and the secondary cluster head (SCH). The experimental results demonstrate that the effectiveness of the CCR protocol to satisfy the quality of service (QoS) requirements in increasing the network lifetime and raising the number of packets sent alike. Moreover, the CCR outperforms other state-of-the-art techniques in decreasing the overflow of data, and thus the network bandwidth usage is reduced.INDEX TERMS Congestion control, clustering protocols, pervasive computing, quality of service (QoS), routing protocols, ubiquitous computing, wireless sensor network (WSN).
Human action recognition techniques have gained significant attention among nextgeneration technologies due to their specific features and high capability to inspect video sequences to understand human actions. As a result, many fields have benefited from human action recognition techniques. Deep learning techniques played a primary role in many approaches to human action recognition. The new era of learning is spreading by transfer learning. Accordingly, this study's main objective is to propose a framework with three main phases for human action recognition. The phases are pre-training, preprocessing, and recognition. This framework presents a set of novel techniques that are three-fold as follows, (i) in the pre-training phase, a standard convolutional neural network is trained on a generic dataset to adjust weights; (ii) to perform the recognition process, this pre-trained model is then applied to the target dataset; and (iii) the recognition phase exploits convolutional neural network and long short-term memory to apply five different architectures. Three architectures are stand-alone and single-stream, while the other two are combinations between the first three in two-stream style. Experimental results show that the first three architectures recorded accuracies of 83.24%, 90.72%, and 90.85%, respectively. The last two architectures achieved accuracies of 93.48% and 94.87%, respectively. Moreover, The recorded results outperform other state-of-the-art models in the same field. INDEX TERMSConvolutional neural network (CNN), Human action recognition (HAR), Long short-term memory (LSTM), Spatiotemporal info, Transfer learning (TL).
Reaction diffusion is the most common growth modelling methodology due to its simplicity and consistency with the biological tumor growth process. However, current extensions of the reaction diffusion model lack one or more of the following: efficient inclusion of treatments’ effects, taking into account the viscoelasticity of brain tissues, and guaranteed stability of the numerical solution. We propose a new model to overcome the aforementioned drawbacks. Guided by directional information derived from diffusion tensor imaging, our model relates tissue heterogeneity with the absorption of the chemotherapy, adopts the linear-quadratic term to simulate the radiotherapy effect, employs Maxwell-Weichert model to incorporate brain viscoelasticity, and ensures the stability of the numerical solution. The performance is verified through experiments on synthetic and real MR images. Experiments on 9 MR datasets of patients with low grade gliomas undergoing surgery with different treatment regimens are carried out and validated using Jaccard score and Dice coefficient. The growth simulation accuracies of the proposed model are in ranges of [0.673 0.822] and [0.805 0.902] for Jaccard scores and Dice coefficients, respectively. The accuracies decrease up to 4% and 2.4% when ignoring treatment effects and the tensor information, while brain viscoelasticity has no significant impact on the accuracies.
Brain tissue segmentation from magnetic resonance (MR) images is an importance task for clinical use. The segmentation process becomes more challenging in the presence of noise, grayscale inhomogeneity, and other image artifacts. In this paper, we propose a robust kernelized local information fuzzy C-means clustering algorithm (RKLIFCM). It incorporates local information into the segmentation process (both grayscale and spatial) for more homogeneous segmentation. In addition, the Gaussian radial basis kernel function is adopted as a distance metric to replace the standard Euclidean distance. The main advantages of the new algorithm are: efficient utilization of local grayscale and spatial information, robustness to noise, ability to preserve image details, free from any parameter initialization, and with high speed as it runs on image histogram. We compared the proposed algorithm with 7 soft clustering algorithms that run on both image histogram and image pixels to segment brain MR images. Experimental results demonstrate that the proposed RKLIFCM algorithm is able to overcome the influence of noise and achieve higher segmentation accuracy with low computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.