The aim of this paper is to characterize the solutions Φ : G → M2(ℂ) of the following matrix functional equations
{{\Phi \left( {xy} \right) + \Phi \left( {\sigma \left( y \right)x} \right)} \over 2} = \Phi \left( x \right)\Phi \left( y \right),\,\,\,\,\,\,x,y, \in G,
and
{{\Phi \left( {xy} \right) - \Phi \left( {\sigma \left( y \right)x} \right)} \over 2} = \Phi \left( x \right)\Phi \left( y \right),\,\,\,\,\,\,x,y, \in G,
where G is a group that need not be abelian, and σ : G → G is an involutive automorphism of G. Our considerations are inspired by the papers [13, 14] in which the continuous solutions of the first equation on abelian topological groups were determined.
Inspired by the papers [2, 10] we will study, on 2-divisible groups that need not be abelian, the alienation problem between Drygas’ and the exponential Cauchy functional equations, which is expressed by the equation
f
(
x
+
y
)
+
g
(
x
+
y
)
g
(
x
-
y
)
=
f
(
x
)
f
(
y
)
+
2
g
(
x
)
+
g
(
y
)
+
g
(
-
y
)
.
f\left( {x + y} \right) + g\left( {x + y} \right)g\left( {x - y} \right) = f\left( x \right)f\left( y \right) + 2g\left( x \right) + g\left( y \right) + g\left( { - y} \right).
We also consider an analogous problem for Drygas’ and the additive Cauchy functional equations as well as for Drygas’ and the logarithmic Cauchy functional equations. Interesting consequences of these results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.