Tactile sensing systems require embedded processing to extract structured information in many application domains as prosthetics and robotics. In this regard, this paper proposes computationally light strategies to pre-process the sensor signals and extract features, feeding single layer feed-forward neural networks (SLFNNs) that proved good generalization performance keeping low the computational cost. We validate our proposal by integrating a tactile sensing system on a Baxter robot to collect and classify data from three objects of different stiffness. We compare different features extraction techniques and five SLFNNs to show the trade-off between generalization accuracy and computational cost of the whole processing unit. The results show that the processing unit that extracts the mean and standard deviation features from signals and adopts a fully connected neural network (FCNN) with 50 neurons and ReLu activation function achieves a high accuracy (94.4%) in the 3-class classification problem with a low computational cost, leading to the deployment on a resource-constrained device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.