The hypothalamic response to an environmental stress implicates the corticotrophin-releasing hormone (CRH) neuroendocrine system of the hypothalamic parvicellular paraventricular nucleus (PVN) in addition to other neuropeptides coexpressed within CRH neurones and controlling the hypothalamo-pituitary-adrenal (HPA) axis activity as well. Such neuropeptides are vasopressin, neurotensin and cholecystokinin (CCK). It has previously been demonstrated that the majority of the CRH neuronal population coexpresses CCK after a peripheral stress in rats. In the present study, we explored such neuroendocrine plasticity in the jerboa in captivity as another animal model. In particular, we studied CCK and CRH expression within the hypothalamic PVN by immunocytochemistry in control versus acute immobilisation stress-submitted jerboas. The results show that CCK- and CRH-immunoreactive neuronal systems are located in the hypothalamic parvicellular PVN. The number of CCK-immunoreactive neurones within the PVN was significantly increased (138% increase) in stressed animals compared to controls. Similarly, the number of CRH-containing neurones was higher in stressed jerboas (128%) compared to controls. These results suggest that the neurogenic stress caused by immobilisation stimulates CCK as well as CRH expression in jerboas, which correlates well with previous data obtained in rats using other stressors. The data obtained also suggest that, in addition to CRH, CCK is another neuropeptide involved in the response to stress in jerboa, acting by controlling HPA axis activity. Because CCK is involved in the phenotypical plasticity of CRH-containing neurones in response to an environmental stress, we also explored their coexpression by double immunocytochemistry within the PVN and the median eminence (i.e. the site of CRH and CCK corelease in the rat) following jerboa immobilisation. The results show that CCK is not coexpressed within CRH neurones in either control or stressed jerboa, suggesting differences between jerboas and rats in the neuroendocrine regulatory mechanisms of the stress response involving CRH and CCK. The adaptative physiological mechanisms to environmental conditions might vary from one mammal species to another.
The corticotropin-releasing hormone (CRH) neurons of the hypothalamic parvocellular paraventricular nucleus (PVN) have a high potential for phenotypical plasticity, allowing them to rapidly modify their neuroendocrine output, depending upon the type of stressors. Indeed, these neurons coexpress other neuropeptides, such as cholecystokinin (CCK), vasopressin (VP), and neurotensin, subserving an eventual complementary function to CRH in the regulation of the pituitary. Unlike in rats, our previous data showed that in jerboas, CCK is not coexpressed within CRH neurons in control as well as stressed animals. The present study explored an eventual VP participation in the phenotypic plasticity of CRH neurons in the jerboa. We analyzed the VP expression within the PVN by immunocytochemistry in male jerboas submitted to acute stress. Our results showed that, contrary to CRH and CCK, no significant change concerned the number of VP-immunoreactive neurons following a 30-min immobilization. The VP/CRH coexpression within PVN and median eminence was investigated by double immunocytochemistry. In control as well as stressed animals, the CRH-immunopositive neurons coexpressed VP within cell bodies and terminals. No significant difference in the number of VP/CRH double-labeled cells was found between both groups. However, such coexpression was quantitatively more important into the posterior PVN as compared with the anterior PVN. This suggests an eventual autocrine/paracrine or endocrine role for jerboa parvocellular VP which is not correlated with acute immobilization stress. VP-immunoreactive neurons also coexpressed CCK within PVN and median eminence of control and stressed jerboas. Such coexpression was more important into the anterior PVN as compared with the posterior PVN. These results showed the occurrence of at least two VP neuronal populations within the jerboa PVN. In addition, the VP expression did not depend upon acute immobilization stress. These data highlight differences in the neuroendocrine regulatory mechanisms of the stress response involving CRH/CCK or VP. They also underline that adaptative physiological mechanisms to stress might vary from one mammal species to another.
Background: Stroke continues to be the third leading cause of death in many countries in addition to being responsible for major disability among survivors. Therefore, stroke is actually a major health care problem and the economic burden of stroke is enormous and rapidly escalating in terms of both health care costs and lost productivity.Objective: To assess the outcome of neurosurgical management of patients with cerebrovascular insufficiency.
Patient and Methods:A number of 43 patients with carotid artery stenosis were divided into two groups: group A 27 patients doing carotid endarterectomy (CEA) procedure and group B 16 patients doing carotid artery stenting (CAS) procedure. The patients had been recruited from inpatient hospital admission and outpatient clinics at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.