The most efficient and beneficial mechanism to the feature of extracting data from an image, has been the Convolutional Neural Network (CNN) and it is used in many fields (Optical character recognition, image classification, object recognition and Facial recognition etc.). In this papier, we studied the character classification problems, using pre-trained models based on Convolutional Neural Network (CNN), and how the performance can change the outcome of dataset that is given. For that, we have used five pre-trained models’ such as VGG16/19, ResNet, Xception et MobileNet. The experiment shows that Xception had the best performance rate compared to other models for all datasets, VGG16/19 performance rate are variants depend on dataset. However, Experiments shows that ResNet achieve the worst accuracy rate compared to other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.