In this paper, we propose a new approach to solve the maximal constraint satisfaction problems (Max-CSP) using the continuous Hopfield network. This approach is divided into two steps: the first step involves modeling the maximal constraint satisfaction problem as 0-1 quadratic programming subject to linear constraints (QP). The second step concerns applying the continuous Hopfield network (CHN) to solve the QP problem. Therefore, the generalized energy function associated to the CHN and an appropriate parameter-setting procedure about Max-CSP problems are given in detail. Finally, the proposed algorithm and some computational experiments solving the Max-CSP are shown.
In this paper, we propose a new approach to solve the document-clustering using the K-Means algorithm. The latter is sensitive to the random selection of the k cluster centroids in the initialization phase. To evaluate the quality of K-Means clustering we propose to model the text document clustering problem as the max stable set problem (MSSP) and use continuous Hopfield network to solve the MSSP problem to have initial centroids. The idea is inspired by the fact that MSSP and clustering share the same principle, MSSP consists to find the largest set of nodes completely disconnected in a graph, and in clustering, all objects are divided into disjoint clusters. Simulation results demonstrate that the proposed K-Means improved by MSSP (KM_MSSP) is efficient of large data sets, is much optimized in terms of time, and provides better quality of clustering than other methods.
This research is an optimal allocation of tasks to processors in order to minimize the total costs of execution and communication. This problem is called the Task Assignment Problem (TAP) with nonuniform communication costs. To solve the latter, the first step concerns the formulation of the problem by an equivalent zero-one quadratic program with a convex objective function using a convexification technique, based on the smallest eigenvalue. The second step concerns the application of the Continuous Hopfield Network (CHN) to solve the obtained problem. The calculation results are presented for the instances from the literature, compared to solutions obtained both the CPLEX solver and by the heuristic genetic algorithm, and show an improvement in the results obtained by applying only the CHN algorithm. We can see that the proposed approach evaluates the efficiency of the theoretical results and achieves the optimal solutions in a short calculation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.