Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and utilized as an active layer in UV photodetectors. First, a ZnO seed layer was deposited by radio frequency (RF) sputtering on polytetrafluoroethylene (PTFE) substrates. Then, TiO2/ZnO thin films (TFs) were successfully grown by combining volumetric mixtures of TiO2 and ZnO at the ratios of 1:7, 1:3, 3:5, and 1:1 via the chemical bath deposition (CBD) method. The morphological, elemental, and topographical analyses of the grown TFs were investigated through SESEM, EDX, and AFM spectroscopy, respectively. XRD patterns illustrated the presence of the unified (002) peak of the Ti/ZnO hexagonal wurtzite structure in all prepared samples, with intensities indicating a very strong preferential crystallinity with increasing TiO2 ratios. Enhanced diffuse reflectance curves were obtained by UV–Vis spectroscopy, with allowed indirect energy bandgaps ranging from 3.17 eV to 3.23 eV. FTIR characterization revealed wider phonon vibration ranges indicating the presence of Ti–O and Zn–O bonds. Metal–semiconductor–metal (MSM) UV photodetectors were fabricated by thermally evaporating Ag electrodes on the grown nanocomposites. The volumetric ratio of TiO2/ZnO impacted the photodetector performance, where the responsivity, photosensitivity, gain, detectivity, rise time, and decay time of 0.495 AW−1, 247.14%, 3.47, 3.68 × 108 jones, 0.63 s, and 0.99 s, respectively, were recorded at a ratio of 1:1 (TiO2:ZnO). Based on the results, the heterostructure nanocomposites grown on PTFE substrates are believed to be highly promising TF for flexible electronics.
In this work, dip coating process (DCP) was used to synthesize TiO2 nanoparticles (NPs). The photocatalytic nanostructured heterojunction was formed on ZnO nanoseeds (NSs) layer grown by radio frequency (RF) sputtering on flexible Teflon (PTFE) substrate. Series of characterizations and analyses reveal the morphology, optical, and structural properties of the nanocomplexes. These include several identified peaks observed by XRD. While, UV-Vis reflectance spectroscopy, photoluminescence (PL), and FTIR were utilized to determine the opto-characteristics, and to observe the presence of functional bonds involved in the growth of the heterojunction thin film. Based on the presented results, the heterostructures relying on a flexible substrate are believed to be highly promising for photocatalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.