The title compound, N-benzo[c][1,2,5]thiazol-4-yl-3-trifluoromethylbenzamide (1) was synthesized by reacting 3-trifluoromethylbenzoyl chloride (4) and 4-aminobenzo[c][1,2,5]thiadiazole (5). The compound was characterized by various spectroscopic methods (1H NMR, 13C NMR, IR, GC-MS) and its composition confirmed by elemental analysis. The importance of this compound lies in its possession of an N,N-bidentate directing group. Such a structural motif is potentially suitable for metal-catalyzed C-H bond functionalization reactions.
The title compound, N-(2-hydroxy-1,1-dimethylethyl)-3-methylbenzamide was synthesized by reacting 3-methylbenzoyl chloride or 3-methylbenzoic acid with 2-amino-2-methyl-1-propanol. In the present report, the synthesized target compound was fully characterized by various spectroscopic methods (1H NMR, 13C NMR, IR, GC-MS), its composition confirmed by elemental analysis, and its structure determined and confirmed by X-ray analysis. The importance of this compound lies in its possession of an N,O-bidentate directing group. Such a structural motif is potentially suitable for metal-catalyzed C–H bond functionalization reactions.
In this study, we report an investigation into the steric (cone angle, θ) and electronic properties of ligands in Ru-catalyzed C–H arylation of aromatic benzamides bearing 8-aminoquinoline as an N,N’-bidentate-directing group. The study employs [RuCl2( p-cymene)]2 as a precatalyst, and a ligand, under study, as a cocatalyst. Various electronically and sterically different monodentate and bidentate phosphine ligands were examined. Other ligands such as phosphites and amines were also tested. The study reveals that while bidentate phosphines, phosphites, and aryl and alkyl amines were found to be ineffective, monodentate triarylphosphines represented by triphenylphosphine were found to be the most effective ligands in the Ru-catalyzed C–H arylation under the conditions specified. In addition, the study reveals that there is a correlation between the steric effects, cone angle (θ) and the reaction efficiency. Thus, for symmetrical phosphine ligands, as the cone angle increases, the yield of the CH arylation product gradually decreased. Moreover, the electronic properties of triarylphosphine ligands influenced the reaction as demonstrated by the decreased ability of electron-poor ligands to promote the reaction. The study also reveals a correlation between the electronic parameter, υCO, of the triarylphosphine ligand and the reaction efficiency. As the carbonyl stretching frequency increases, the reaction yield gradually decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.