Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.
We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.
Roux-en-Y gastric bypass (RYGB) has become a prominent therapeutic option for long-term treatment of morbid obesity and type 2 diabetes mellitus (T2D). Cross talk and pathogenetic consequences of RYGB-induced profound effects on metabolism and gut microbiome are poorly understood. The aim of the present study therefore was to characterize intra-individual changes of gut microbial composition before and 3 months after RYGB by metagenomic sequencing in morbidly obese patients (body mass index (BMI)440 kg m À 2 ) with T2D. Subsequently, metagenomic data were correlated with clinical indices. Based on gene relative abundance profile, 1061 species, 729 genera, 44 phyla and 5127 KO (KEGG Orthology) were identified. Despite high diversity, bacteria could mostly be assigned to seven bacterial divisions. The overall metagenomic RYGB-induced shift was characterized by a reduction of Firmicutes and Bacteroidetes and an increase of Proteobacteria. Twenty-two microbial species and 11 genera were significantly altered by RYGB. Using principal component analysis, highly correlated species were assembled into two common components. Component 1 consisted of species that were mainly associated with BMI and C-reactive protein. This component was characterized by increased numbers of Proteobacterium Enterobacter cancerogenus and decreased Firmicutes Faecalibacterium prausnitzii and Coprococcus comes. Functional analysis of carbohydrate metabolism by KO revealed significant effects in 13 KOs assigned to phosphotransferase system. Spearmen's Rank correlation indicated an association of 10 species with plasma total-or low-density lipoprotein cholesterol, and 5 species with triglycerides. F. prausnitzii was directly correlated to fasting blood glucose. This is the first clinical demonstration of a profound and specific intra-individual modification of gut microbial composition by full metagenomic sequencing. A clear correlation exists of microbiome composition and gene function with an improvement in metabolic and inflammatory parameters. This will allow to develop new diagnostic and therapeutic strategies based on metagenomic sequencing of the human gut microbiome.
The role of bacteria other than Helicobacter pylori (HP) in the stomach remains elusive. We characterized the gastric microbiota in individuals with different histological stages of gastric carcinogenesis and after receiving HP eradication therapy. Endoscopic gastric biopsies were obtained from subjects with HP gastritis, gastric intestinal metaplasia (IM), gastric cancer (GC) and HP negative controls. Gastric microbiota was characterized by Illumina MiSeq platform targeting the 16 S rDNA. Apart from dominant H. pylori, we observed other Proteobacteria including Haemophilus, Serratia, Neisseria and Stenotrophomonas as the major components of the human gastric microbiota. Although samples were largely converged according to the relative abundance of HP, a clear separation of GC and other samples was recovered. Whilst there was a strong inverse association between HP relative abundance and bacterial diversity, this association was weak in GC samples which tended to have lower bacterial diversity compared with other samples with similar HP levels. Eradication of HP resulted in an increase in bacterial diversity and restoration of the relative abundance of other bacteria to levels similar to individuals without HP. In conclusion, HP colonization results in alterations of gastric microbiota and reduction in bacterial diversity, which could be restored by antibiotic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.