Summary
Defects in primary cilia lead to devastating disease due to their roles in sensation and developmental signaling, but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain three-dimensional maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wildtype and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions. They suggest that the ciliary rootlet is involved in cellular transport and stabilizes the axoneme. A defect in the BBSome membrane coat caused vesicle targeting near the base of the cilium. Loss of the proteins encoded by the Cngb1 gene disrupted links between the disk and plasma membranes. The structures of the outer segment membranes support a model for disk morphogenesis in which basal disks are enveloped by the plasma membrane.
Mutations in BEST1, encoding bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD), a dominantly inherited macular degeneration characterized by a diminished electrooculogram light peak (LP), lipofuscin in retinal pigment epithelial cells (RPE), and fluid- and debris-filled retinal detachments. To understand the pathogenesis of BVMD we generated knock-in mice carrying the BVMD-causing mutation W93C in Best1. Both Best1(+/W93C)and Best1(W93C/W93C) mice had normal ERG a- and b-waves, but exhibited an altered LP luminance response reminiscent of that observed in BVMD patients. Morphological analysis identified fluid- and debris-filled retinal detachments in mice as young as 6 months of age. By 18-24 months of age Best1(+/W93C)and Best1(W93C/W93C) mice exhibited enhanced accumulation of lipofuscin in the RPE, and a significant deposition of debris composed of unphagocytosed photoreceptor outer segments and lipofuscin granules in the subretinal space. Although Best1 is thought to function as a Ca(2+)-activated Cl(-) channel, RPE cells from Best1(W93C) mice exhibited normal Cl(-) conductances. We have previously shown that Best1(-/-) mice exhibit increased [Ca(2+)](i) in response to ATP stimulation. However, ATP-stimulated changes in [Ca(2+)](i) in RPE cells from Best1(+/W93C) and Best1(W93C/W93C) mice were suppressed relative to Best1(+/+) littermates. Based on these data we conclude that mice carrying the Best1(W93C) mutation are a valid model for BVMD. Furthermore, these data suggest that BVMD is not because of Best1 deficiency, as the phenotypes of Best1(+/W93C) and Best1(W93C/W93C) mice are distinct from that of Best1(-/-) mice with regard to lipofuscin accumulation, and changes in the LP and ATP Ca(2+) responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.