Accumulated evidence has demonstrated that dysregulation of microRNAs (miRNAs) contributes to tumourigenesis and tumour development of glioblastoma multiforme (GBM). Therefore, miRNAs may be promising candidates in the development of prognosis biomarkers and effective therapeutic targets for patients with GBM. A number of studies have reported that miRNA‑574 (miR‑574) is aberrantly expressed in multiple types of human cancers. However, the expression pattern, biological functions and molecular mechanism of miR‑574 in GBM are yet to be elucidated. Therefore, the present study aimed to determine the expression level and biological functions of miR‑574 in GBM and the underlying molecular mechanisms. In the present study, miR‑574 levels were measured by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and were demonstrated to be significantly downregulated in human GBM tissues and cell lines. Functional experiments indicated that restored expression of miR‑574 using mimics led to the inhibition of the cell proliferation and invasion of GBM cells, as determined by Cell Counting kit‑8 and Matrigel invasion assays, respectively. In addition, bioinformatics analysis predicted that zinc finger E‑box‑binding homeobox 1 (ZEB1) may be a target of miR‑574. Subsequent RT‑qPCR, western blot analysis and luciferase reporter assays confirmed that ZEB1 was a direct target of miR‑574 in GBM. Additionally, ZEB1 was demonstrated to be upregulated and inversely correlated with miR‑574 expression in clinical GBM tissues. Rescue experiments demonstrated that overexpression of ZEB1 attenuated the inhibitory effects of miR‑574 on the proliferation and invasion of GBM cells. Overall, the results of the present study highlighted the potential tumour inhibitory roles of miR‑574 in GBM, thereby indicating that miR‑574 may be a novel and efficient therapeutic target for the treatment of patients with GBM.
We investigated the expression of miR-146a in peripheral blood mononuclear cell (PBMC) of patients with ankylosing spondylitis (AS) and its correlation with inflammatory factors to explore the clinical significance. In total 45 patients with AS were selected at the Weifang People's Hospital from June, 2014 to January, 2016. At the same time, 30 healthy volunteers were also selected to serve as control group. Expression level of miR-146a in PBMC cells of patients in each group was detected by quantitative real-time-polymerase chain reaction (qRT-PCR). Levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in serum and the supernatant of culture medium of PBMC derived from each group were detected by enzyme-linked immunosorbent assay (ELISA). Correlations between expression level of miR-146a and serum inflammatory factors, and clinical indicators were analyzed. Clinical indicators included bath ankylosing spondylitis disease activity index (BASDAI), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and duration of morning stiffness. Expression level of miR-146a in PBMC of AS patients was significantly higher than that of healthy control (P<0.01); levels of TNF-α, IL-1β and IL-6 in serum and the supernatant of culture medium of PBMC derived from AS patients were significant compared to those of control group (P<0.01); expression of miR-146a in PBMC of patients with AS was positively correlated with the levels of TNF-α, IL-1β and IL-6 in serum (r=0.632, P<0.01; r=0.574, P<0.01; r=0.483, P<0.01). In addition, expression level of miR-146a in PBMC of patients with AS was positively correlated with BASDAI, ESR, CRP and duration of morning stiffness (r=0.551, P<0.01; r=0.738, P<0.01; r=0.685, P<0.01; r=0.497, P<0.01). Expression level of miR-146a in PBMC of AS patients was significantly increased and the expression level was positively correlated with the levels of TNF-α, IL-1β and IL-6 in serum (P<0.05). In addition, expression level of miR-146a in PBMC of AS patients was also positively correlated with BASDAI, ESR, CRP and duration of morning stiffness. Those results suggest that miR-146a may be involved in the pathogenesis of AS, and the expression level of miR-146a in PBMC cells may be helpful for diagnosis of AS and judgment of disease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.