Androgen receptor (AR) plays a central role in prostate cancer, with most tumors responding to androgen deprivation therapies, but the molecular basis for this androgen dependence has not been determined. Androgen [5A-dihydrotestosterone (DHT)] stimulation of LNCaP prostate cancer cells, which have constitutive phosphatidylinositol 3-kinase (PI3K)/ Akt pathway activation due to PTEN loss, caused increased expression of cyclin D1, D2, and D3 proteins, retinoblastoma protein hyperphosphorylation, and cell cycle progression. However, cyclin D1 and D2 message levels were unchanged, indicating that the increases in cyclin D proteins were mediated by a post-transcriptional mechanism. This mechanism was identified as mammalian target of rapamycin (mTOR) activation. DHT treatment increased mTOR activity as assessed by phosphorylation of the downstream targets p70 S6 kinase and 4E-BP1, and mTOR inhibition with rapamycin blocked the DHT-stimulated increase in cyclin D proteins. Significantly, DHT stimulation of mTOR was not mediated through activation of the PI3K/Akt or mitogen-activated protein kinase/p90 ribosomal S6 kinase pathways and subsequent tuberous sclerosis complex 2/tuberin inactivation or by suppression of AMP-activated protein kinase. In contrast, mTOR activation by DHT was dependent on ARstimulated mRNA synthesis. Oligonucleotide microarrays showed that DHT-stimulated rapid increases in multiple genes that regulate nutrient availability, including transporters for amino acids and other organic ions. These results indicate that a critical function of AR in PTEN-deficient prostate cancer cells is to support the pathologic activation of mTOR, possibly by increasing the expression of proteins that enhance nutrient availability and thereby prevent feedback inhibition of mTOR. (Cancer Res 2006; 66(15): 7783-92)
Androgen receptors (ARs) are phosphorylated at multiple sites in response to ligand binding, but the kinases mediating AR phosphorylation and the importance of these kinases in AR function have not been established. Here we show that cyclin-dependent kinase 1 (Cdk1) mediates AR phosphorylation at Ser-81 and increases AR protein expression, and that Cdk1 inhibitors decrease AR Ser-81 phosphorylation, protein expression, and transcriptional activity in prostate cancer (PCa) cells. The decline in AR protein expression mediated by the Cdk inhibitor roscovitine was prevented by proteosome inhibitors, indicating that Cdk1 stabilizes AR protein, although roscovitine also decreased AR message levels. Analysis of an S81A AR mutant demonstrated that this site is not required for transcriptional activity or Cdk1-mediated AR stabilization in transfected cells. The AR is active and seems to be stabilized by low levels of androgen in ''androgen-independent'' PCas that relapse subsequent to androgen-deprivation therapy. Significantly, the expression of cyclin B and Cdk1 was increased in these tumors, and treatment with roscovitine abrogated responses to low levels of androgen in the androgen-independent C4-2 PCa cell line. Taken together, these findings identify Cdk1 as a Ser-81 kinase and indicate that Cdk1 stabilizes AR protein by phosphorylation at a site(s) distinct from Ser-81. Moreover, these results indicate that increased Cdk1 activity is a mechanism for increasing AR expression and stability in response to low androgen levels in androgen-independent PCas, and that Cdk1 antagonists may enhance responses to androgen-deprivation therapy.
T cells encounter two main checkpoints during development in the thymus. These checkpoints are critically dependent on signals derived from the thymic microenvironment as well as from the pre-T cell receptor (pre-TCR) and the alphabeta TCR. Here we show that T cell-specific deletion of beta-catenin impaired T cell development at the beta-selection checkpoint, leading to a substantial decrease in splenic T cells. In addition, beta-catenin also seemed to be a target of TCR-CD3 signals in thymocytes and mature T cells. These data indicate that beta-catenin-mediated signals are required for normal T cell development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.